Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, A. J. Dolman, E. S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas G. Pypker, W. L. Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, Tuula Aalto
Abstract
Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).- Cite:
- Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, A. J. Dolman, E. S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, et al.. 2019. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, Volume 11, Issue 3, 11(3):1263–1289.
- Copy Citation:
Export citation
@article{Peltola-2019-Monthly, title = "Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations", author = {Peltola, Olli and Vesala, Timo and Gao, Yao and R{\"a}ty, Olle and Alekseychik, Pavel and Aurela, Mika and Chojnicki, Bogdan H. and Desai, Ankur R. and Dolman, A. J. and Euskirchen, E. S. and Friborg, Thomas and G{\"o}ckede, Mathias and Helbig, Manuel and Humphreys, Elyn and Jackson, Robert B. and Jocher, Georg and Joos, Fortunat and Klatt, Janina and Knox, Sara and Kowalska, Natalia and Kutzbach, Lars and Lienert, Sebastian and Lohila, Annalea and Mammarella, Ivan and Nadeau, Daniel F. and Nilsson, Mats B. and Oechel, Walter C. and Peichl, Matthias and Pypker, Thomas G. and Quinton, W. L. and Rinne, Janne and Sachs, Torsten and Samson, Mateusz and Schmid, Hans Peter and Sonnentag, Oliver and Wille, Christian and Zona, Donatella and Aalto, Tuula}, journal = "Earth System Science Data, Volume 11, Issue 3", volume = "11", number = "3", year = "2019", publisher = "Copernicus GmbH", url = "https://gwf-uwaterloo.github.io/gwf-publications/G19-140001", doi = "10.5194/essd-11-1263-2019", pages = "1263--1289", abstract = "Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process ({``}bottom-up{''}) or inversion ({``}top-down{''}) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash{--}Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3{--}41.2, 95 {\%} confidence interval calculated from a RF model ensemble), 31 (21.4{--}39.9) or 38 (25.9{--}49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Peltola-2019-Monthly"> <titleInfo> <title>Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations</title> </titleInfo> <name type="personal"> <namePart type="given">Olli</namePart> <namePart type="family">Peltola</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Timo</namePart> <namePart type="family">Vesala</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yao</namePart> <namePart type="family">Gao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Olle</namePart> <namePart type="family">Räty</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pavel</namePart> <namePart type="family">Alekseychik</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mika</namePart> <namePart type="family">Aurela</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bogdan</namePart> <namePart type="given">H</namePart> <namePart type="family">Chojnicki</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ankur</namePart> <namePart type="given">R</namePart> <namePart type="family">Desai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">A</namePart> <namePart type="given">J</namePart> <namePart type="family">Dolman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">E</namePart> <namePart type="given">S</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="family">Friborg</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mathias</namePart> <namePart type="family">Göckede</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Manuel</namePart> <namePart type="family">Helbig</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Robert</namePart> <namePart type="given">B</namePart> <namePart type="family">Jackson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Georg</namePart> <namePart type="family">Jocher</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fortunat</namePart> <namePart type="family">Joos</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Janina</namePart> <namePart type="family">Klatt</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Knox</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Natalia</namePart> <namePart type="family">Kowalska</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lars</namePart> <namePart type="family">Kutzbach</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sebastian</namePart> <namePart type="family">Lienert</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Annalea</namePart> <namePart type="family">Lohila</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Mammarella</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="given">F</namePart> <namePart type="family">Nadeau</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mats</namePart> <namePart type="given">B</namePart> <namePart type="family">Nilsson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Walter</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Peichl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="given">G</namePart> <namePart type="family">Pypker</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">W</namePart> <namePart type="given">L</namePart> <namePart type="family">Quinton</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Janne</namePart> <namePart type="family">Rinne</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torsten</namePart> <namePart type="family">Sachs</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mateusz</namePart> <namePart type="family">Samson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hans</namePart> <namePart type="given">Peter</namePart> <namePart type="family">Schmid</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Wille</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tuula</namePart> <namePart type="family">Aalto</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2019</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Earth System Science Data, Volume 11, Issue 3</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Copernicus GmbH</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).</abstract> <identifier type="citekey">Peltola-2019-Monthly</identifier> <identifier type="doi">10.5194/essd-11-1263-2019</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G19-140001</url> </location> <part> <date>2019</date> <detail type="volume"><number>11</number></detail> <detail type="issue"><number>3</number></detail> <extent unit="page"> <start>1263</start> <end>1289</end> </extent> </part> </mods> </modsCollection>
%0 Journal Article %T Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations %A Peltola, Olli %A Vesala, Timo %A Gao, Yao %A Räty, Olle %A Alekseychik, Pavel %A Aurela, Mika %A Chojnicki, Bogdan H. %A Desai, Ankur R. %A Dolman, A. J. %A Euskirchen, E. S. %A Friborg, Thomas %A Göckede, Mathias %A Helbig, Manuel %A Humphreys, Elyn %A Jackson, Robert B. %A Jocher, Georg %A Joos, Fortunat %A Klatt, Janina %A Knox, Sara %A Kowalska, Natalia %A Kutzbach, Lars %A Lienert, Sebastian %A Lohila, Annalea %A Mammarella, Ivan %A Nadeau, Daniel F. %A Nilsson, Mats B. %A Oechel, Walter C. %A Peichl, Matthias %A Pypker, Thomas G. %A Quinton, W. L. %A Rinne, Janne %A Sachs, Torsten %A Samson, Mateusz %A Schmid, Hans Peter %A Sonnentag, Oliver %A Wille, Christian %A Zona, Donatella %A Aalto, Tuula %J Earth System Science Data, Volume 11, Issue 3 %D 2019 %V 11 %N 3 %I Copernicus GmbH %F Peltola-2019-Monthly %X Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019). %R 10.5194/essd-11-1263-2019 %U https://gwf-uwaterloo.github.io/gwf-publications/G19-140001 %U https://doi.org/10.5194/essd-11-1263-2019 %P 1263-1289
Markdown (Informal)
[Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations](https://gwf-uwaterloo.github.io/gwf-publications/G19-140001) (Peltola et al., GWF 2019)
- Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations (Peltola et al., GWF 2019)
ACL
- Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, A. J. Dolman, E. S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, et al.. 2019. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, Volume 11, Issue 3, 11(3):1263–1289.