Solar‐induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes

Jingfeng Xiao, Xing Li, Binbin He, M. Altaf Arain, Jason Beringer, Ankur R. Desai, Carmen Emmel, David Y. Hollinger, Alisa Krasnova, Ivan Mammarella, Steffen M. Noe, Penélope Serrano-Ortíz, Camilo Rey‐Sánchez, Adrian V. Rocha, Andrej Varlagin


Abstract
In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.
Cite:
Jingfeng Xiao, Xing Li, Binbin He, M. Altaf Arain, Jason Beringer, Ankur R. Desai, Carmen Emmel, David Y. Hollinger, Alisa Krasnova, Ivan Mammarella, Steffen M. Noe, Penélope Serrano-Ortíz, Camilo Rey‐Sánchez, Adrian V. Rocha, and Andrej Varlagin. 2019. Solar‐induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes. Global Change Biology, Volume 25, Issue 4, 25(4).
Copy Citation: