The biophysical climate mitigation potential of boreal peatlands during the growing season
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Erik Isabelle, Hiroki Iwata, Rachhpal S. Jassal, Mika Korkiakoski, J. Kurbatova, Lars Kutzbach, Е. Д. Лапшина, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Paul Moore, Trofim C. Maximov, Daniel F. Nadeau, Erin M. Nicholls, Mats B. Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Anatoly Prokushkin, W. L. Quinton, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, Ian B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Jessica Turner, Masahito Ueyama, Andrej Varlagin, Timo Vesala, Martin Wilmking, Vyacheslav Zyrianov, Christopher Schulze
Abstract
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. © 2020 The Author(s). Published by IOP Publishing Ltd. (Less)- Cite:
- Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, et al.. 2020. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, Volume 15, Issue 10, 15(10):104004.
- Copy Citation:
Export citation
@article{Helbig-2020-The, title = "The biophysical climate mitigation potential of boreal peatlands during the growing season", author = {Helbig, Manuel and Waddington, J. M. and Alekseychik, Pavel and Amiro, B. D. and Aurela, Mika and Barr, Alan and Black, T. Andrew and Carey, Sean K. and Chen, Jiquan and Chi, Jinshu and Desai, Ankur R. and Dunn, Allison L. and Euskirchen, E. S. and Flanagan, Lawrence B. and Friborg, Thomas and Garneau, Michelle and Grelle, Achim and Harder, Silvie and Heliasz, Michal and Humphreys, Elyn and Ikawa, Hiroki and Isabelle, Pierre‐Erik and Iwata, Hiroki and Jassal, Rachhpal S. and Korkiakoski, Mika and Kurbatova, J. and Kutzbach, Lars and Лапшина, Е. Д. and Lindroth, Anders and L{\"o}fvenius, Mikaell Ottosson and Lohila, Annalea and Mammarella, Ivan and Marsh, Philip and Moore, Paul and Maximov, Trofim C. and Nadeau, Daniel F. and Nicholls, Erin M. and Nilsson, Mats B. and Ohta, Takeshi and Peichl, Matthias and Petrone, Richard M. and Prokushkin, Anatoly and Quinton, W. L. and Roulet, Nigel T. and Runkle, Benjamin R. K. and Sonnentag, Oliver and Strachan, Ian B. and Taillardat, Pierre and Tuittila, Eeva‐Stiina and Tuovinen, Juha‐Pekka and Turner, Jessica and Ueyama, Masahito and Varlagin, Andrej and Vesala, Timo and Wilmking, Martin and Zyrianov, Vyacheslav and Schulze, Christopher}, journal = "Environmental Research Letters, Volume 15, Issue 10", volume = "15", number = "10", year = "2020", publisher = "IOP Publishing", url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-59001", doi = "10.1088/1748-9326/abab34", pages = "104004", abstract = "Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20{\%} decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 {\mbox{$^\circ$}}C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45{\mbox{$^\circ$}}N) and decrease toward the northern limit of the boreal biome (∼70{\mbox{$^\circ$}}N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. {\copyright} 2020 The Author(s). Published by IOP Publishing Ltd. (Less)", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Helbig-2020-The"> <titleInfo> <title>The biophysical climate mitigation potential of boreal peatlands during the growing season</title> </titleInfo> <name type="personal"> <namePart type="given">Manuel</namePart> <namePart type="family">Helbig</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="given">M</namePart> <namePart type="family">Waddington</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pavel</namePart> <namePart type="family">Alekseychik</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">B</namePart> <namePart type="given">D</namePart> <namePart type="family">Amiro</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mika</namePart> <namePart type="family">Aurela</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alan</namePart> <namePart type="family">Barr</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">T</namePart> <namePart type="given">Andrew</namePart> <namePart type="family">Black</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sean</namePart> <namePart type="given">K</namePart> <namePart type="family">Carey</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jiquan</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jinshu</namePart> <namePart type="family">Chi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ankur</namePart> <namePart type="given">R</namePart> <namePart type="family">Desai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Allison</namePart> <namePart type="given">L</namePart> <namePart type="family">Dunn</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">E</namePart> <namePart type="given">S</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lawrence</namePart> <namePart type="given">B</namePart> <namePart type="family">Flanagan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="family">Friborg</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Michelle</namePart> <namePart type="family">Garneau</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Achim</namePart> <namePart type="family">Grelle</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Silvie</namePart> <namePart type="family">Harder</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Michal</namePart> <namePart type="family">Heliasz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroki</namePart> <namePart type="family">Ikawa</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pierre‐Erik</namePart> <namePart type="family">Isabelle</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroki</namePart> <namePart type="family">Iwata</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rachhpal</namePart> <namePart type="given">S</namePart> <namePart type="family">Jassal</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mika</namePart> <namePart type="family">Korkiakoski</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="family">Kurbatova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lars</namePart> <namePart type="family">Kutzbach</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Е.</namePart> <namePart type="given">Д.</namePart> <namePart type="family">Лапшина</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anders</namePart> <namePart type="family">Lindroth</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikaell</namePart> <namePart type="given">Ottosson</namePart> <namePart type="family">Löfvenius</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Annalea</namePart> <namePart type="family">Lohila</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Mammarella</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philip</namePart> <namePart type="family">Marsh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paul</namePart> <namePart type="family">Moore</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Trofim</namePart> <namePart type="given">C</namePart> <namePart type="family">Maximov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="given">F</namePart> <namePart type="family">Nadeau</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Erin</namePart> <namePart type="given">M</namePart> <namePart type="family">Nicholls</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mats</namePart> <namePart type="given">B</namePart> <namePart type="family">Nilsson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Takeshi</namePart> <namePart type="family">Ohta</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Peichl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Richard</namePart> <namePart type="given">M</namePart> <namePart type="family">Petrone</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anatoly</namePart> <namePart type="family">Prokushkin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">W</namePart> <namePart type="given">L</namePart> <namePart type="family">Quinton</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nigel</namePart> <namePart type="given">T</namePart> <namePart type="family">Roulet</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Benjamin</namePart> <namePart type="given">R</namePart> <namePart type="given">K</namePart> <namePart type="family">Runkle</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ian</namePart> <namePart type="given">B</namePart> <namePart type="family">Strachan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pierre</namePart> <namePart type="family">Taillardat</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eeva‐Stiina</namePart> <namePart type="family">Tuittila</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juha‐Pekka</namePart> <namePart type="family">Tuovinen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jessica</namePart> <namePart type="family">Turner</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masahito</namePart> <namePart type="family">Ueyama</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andrej</namePart> <namePart type="family">Varlagin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Timo</namePart> <namePart type="family">Vesala</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Wilmking</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vyacheslav</namePart> <namePart type="family">Zyrianov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Schulze</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Environmental Research Letters, Volume 15, Issue 10</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>IOP Publishing</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. \copyright 2020 The Author(s). Published by IOP Publishing Ltd. (Less)</abstract> <identifier type="citekey">Helbig-2020-The</identifier> <identifier type="doi">10.1088/1748-9326/abab34</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G20-59001</url> </location> <part> <date>2020</date> <detail type="volume"><number>15</number></detail> <detail type="issue"><number>10</number></detail> <detail type="page"><number>104004</number></detail> </part> </mods> </modsCollection>
%0 Journal Article %T The biophysical climate mitigation potential of boreal peatlands during the growing season %A Helbig, Manuel %A Waddington, J. M. %A Alekseychik, Pavel %A Amiro, B. D. %A Aurela, Mika %A Barr, Alan %A Black, T. Andrew %A Carey, Sean K. %A Chen, Jiquan %A Chi, Jinshu %A Desai, Ankur R. %A Dunn, Allison L. %A Euskirchen, E. S. %A Flanagan, Lawrence B. %A Friborg, Thomas %A Garneau, Michelle %A Grelle, Achim %A Harder, Silvie %A Heliasz, Michal %A Humphreys, Elyn %A Ikawa, Hiroki %A Isabelle, Pierre‐Erik %A Iwata, Hiroki %A Jassal, Rachhpal S. %A Korkiakoski, Mika %A Kurbatova, J. %A Kutzbach, Lars %A Лапшина, Е. Д. %A Lindroth, Anders %A Löfvenius, Mikaell Ottosson %A Lohila, Annalea %A Mammarella, Ivan %A Marsh, Philip %A Moore, Paul %A Maximov, Trofim C. %A Nadeau, Daniel F. %A Nicholls, Erin M. %A Nilsson, Mats B. %A Ohta, Takeshi %A Peichl, Matthias %A Petrone, Richard M. %A Prokushkin, Anatoly %A Quinton, W. L. %A Roulet, Nigel T. %A Runkle, Benjamin R. K. %A Sonnentag, Oliver %A Strachan, Ian B. %A Taillardat, Pierre %A Tuittila, Eeva‐Stiina %A Tuovinen, Juha‐Pekka %A Turner, Jessica %A Ueyama, Masahito %A Varlagin, Andrej %A Vesala, Timo %A Wilmking, Martin %A Zyrianov, Vyacheslav %A Schulze, Christopher %J Environmental Research Letters, Volume 15, Issue 10 %D 2020 %V 15 %N 10 %I IOP Publishing %F Helbig-2020-The %X Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. \copyright 2020 The Author(s). Published by IOP Publishing Ltd. (Less) %R 10.1088/1748-9326/abab34 %U https://gwf-uwaterloo.github.io/gwf-publications/G20-59001 %U https://doi.org/10.1088/1748-9326/abab34 %P 104004
Markdown (Informal)
[The biophysical climate mitigation potential of boreal peatlands during the growing season](https://gwf-uwaterloo.github.io/gwf-publications/G20-59001) (Helbig et al., GWF 2020)
- The biophysical climate mitigation potential of boreal peatlands during the growing season (Helbig et al., GWF 2020)
ACL
- Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, et al.. 2020. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters, Volume 15, Issue 10, 15(10):104004.