EMDNA: Ensemble Meteorological Dataset for North America

Guoqiang Tang, Martyn Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, Paul H. Whitfield


Abstract
Abstract. Probabilistic methods are very useful to estimate the spatial variability in meteorological conditions (e.g., spatial patterns of precipitation and temperature across large domains). In ensemble probabilistic methods, equally plausible ensemble members are used to approximate the probability distribution, hence uncertainty, of a spatially distributed meteorological variable conditioned on the available information. The ensemble can be used to evaluate the impact of the uncertainties in a myriad of applications. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018, derived from a fusion of station observations and reanalysis model outputs. The station data used in EMDNA are from a serially complete dataset for North America (SCDNA) that fills gaps in precipitation and temperature measurements using multiple strategies. Outputs from three reanalysis products are regridded, corrected, and merged using the Bayesian Model Averaging. Optimal Interpolation (OI) is used to merge station- and reanalysis-based estimates. EMDNA estimates are generated based on OI estimates and spatiotemporally correlated random fields. Evaluation results show that (1) the merged reanalysis estimates outperform raw reanalysis estimates, particularly in high latitudes and mountainous regions; (2) the OI estimates are more accurate than the reanalysis and station-based regression estimates, with the most notable improvement for precipitation occurring in sparsely gauged regions; and (3) EMDNA estimates exhibit good performance according to the diagrams and metrics used for probabilistic evaluation. We also discuss the limitations of the current framework and highlight that persistent efforts are needed to further develop probabilistic methods and ensemble datasets. Overall, EMDNA is expected to be useful for hydrological and meteorological applications in North America. The whole dataset and a teaser dataset (a small subset of EMDNA for easy download and preview) are available at https://doi.org/10.20383/101.0275 (Tang et al., 2020a).
Cite:
Guoqiang Tang, Martyn Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield. 2020. EMDNA: Ensemble Meteorological Dataset for North America.
Copy Citation: