@article{Watts-2021-Soil,
title = "Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada",
author = "Watts, Jennifer D. and
Natali, Susan M. and
Minions, Christina and
Risk, D. A. and
Arndt, Kyle A. and
Zona, Donatella and
Euskirchen, E. S. and
Rocha, Adrian V. and
Sonnentag, Oliver and
Helbig, Manuel and
Kalhori, Aram and
Oechel, Walter C. and
Ikawa, Hiroki and
Ueyama, Masahito and
Suzuki, Rikie and
Kobayashi, Hideki and
Celis, Gerardo and
Schuur, Edward A. G. and
Humphreys, Elyn and
Kim, Yongwon and
Lee, Bang‐Yong and
Goetz, S. J. and
Madani, Nima and
Schiferl, Luke D. and
Commane, R. and
Kimball, John S. and
Liu, Zhihua and
Torn, Margaret and
Potter, Stefano and
Wang, Jonathan and
Jorgenson, M. Torre and
Xiao, Jingfeng and
Li, Xing and
Edgar, Colin W. and
Watts, Jennifer D. and
Natali, Susan M. and
Minions, Christina and
Risk, D. A. and
Arndt, Kyle A. and
Zona, Donatella and
Euskirchen, E. S. and
Rocha, Adrian V. and
Sonnentag, Oliver and
Helbig, Manuel and
Kalhori, Aram and
Oechel, Walter C. and
Ikawa, Hiroki and
Ueyama, Masahito and
Suzuki, Rikie and
Kobayashi, Hideki and
Celis, Gerardo and
Schuur, Edward A. G. and
Humphreys, Elyn and
Kim, Yongwon and
Lee, Bang‐Yong and
Goetz, S. J. and
Madani, Nima and
Schiferl, Luke D. and
Commane, R. and
Kimball, John S. and
Liu, Zhihua and
Torn, Margaret and
Potter, Stefano and
Wang, Jonathan and
Jorgenson, M. Torre and
Xiao, Jingfeng and
Li, Xing and
Edgar, Colin W.",
journal = "Environmental Research Letters, Volume 16, Issue 8",
volume = "16",
number = "8",
year = "2021",
publisher = "IOP Publishing",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-101001",
doi = "10.1088/1748-9326/ac1222",
pages = "084051",
abstract = "Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June{--}August) and that summer fluxes were higher in boreal sites (1.87 {\mbox{$\pm$}} 0.67 g CO 2 {--}C m −2 d −1 ) relative to tundra (0.94 {\mbox{$\pm$}} 0.4 g CO 2 {--}C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 {\mbox{$\pm$}} 0.2 g CO 2 {--}C m −2 d −1 ; tundra: 0.18 {\mbox{$\pm$}} 0.16 g CO 2 {--}C m −2 d −1 ) from soils during the winter (November{--}March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 {\mbox{$\pm$}} 120 Tg CO 2 {--}C during the 2016{--}2017 period. Summer months contributed to 58{\%} of the regional soil respiration, winter months contributed to 15{\%}, and the shoulder months contributed to 27{\%}. In total, soil respiration offset 54{\%} of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Watts-2021-Soil">
<titleInfo>
<title>Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Watts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Natali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christina</namePart>
<namePart type="family">Minions</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Risk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Arndt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donatella</namePart>
<namePart type="family">Zona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Euskirchen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Rocha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Sonnentag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Helbig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aram</namePart>
<namePart type="family">Kalhori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Oechel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Ikawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masahito</namePart>
<namePart type="family">Ueyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rikie</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideki</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerardo</namePart>
<namePart type="family">Celis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="given">A</namePart>
<namePart type="given">G</namePart>
<namePart type="family">Schuur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elyn</namePart>
<namePart type="family">Humphreys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongwon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bang‐Yong</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Goetz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nima</namePart>
<namePart type="family">Madani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Schiferl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Commane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Kimball</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihua</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margaret</namePart>
<namePart type="family">Torn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefano</namePart>
<namePart type="family">Potter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Torre</namePart>
<namePart type="family">Jorgenson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingfeng</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Edgar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Environmental Research Letters, Volume 16, Issue 8</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>IOP Publishing</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 \pm 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 \pm 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 \pm 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 \pm 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 \pm 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.</abstract>
<identifier type="citekey">Watts-2021-Soil</identifier>
<identifier type="doi">10.1088/1748-9326/ac1222</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G21-101001</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>16</number></detail>
<detail type="issue"><number>8</number></detail>
<detail type="page"><number>084051</number></detail>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
%A Watts, Jennifer D.
%A Natali, Susan M.
%A Minions, Christina
%A Risk, D. A.
%A Arndt, Kyle A.
%A Zona, Donatella
%A Euskirchen, E. S.
%A Rocha, Adrian V.
%A Sonnentag, Oliver
%A Helbig, Manuel
%A Kalhori, Aram
%A Oechel, Walter C.
%A Ikawa, Hiroki
%A Ueyama, Masahito
%A Suzuki, Rikie
%A Kobayashi, Hideki
%A Celis, Gerardo
%A Schuur, Edward A. G.
%A Humphreys, Elyn
%A Kim, Yongwon
%A Lee, Bang‐Yong
%A Goetz, S. J.
%A Madani, Nima
%A Schiferl, Luke D.
%A Commane, R.
%A Kimball, John S.
%A Liu, Zhihua
%A Torn, Margaret
%A Potter, Stefano
%A Wang, Jonathan
%A Jorgenson, M. Torre
%A Xiao, Jingfeng
%A Li, Xing
%A Edgar, Colin W.
%J Environmental Research Letters, Volume 16, Issue 8
%D 2021
%V 16
%N 8
%I IOP Publishing
%F Watts-2021-Soil
%X Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 \pm 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 \pm 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 \pm 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 \pm 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 \pm 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.
%R 10.1088/1748-9326/ac1222
%U https://gwf-uwaterloo.github.io/gwf-publications/G21-101001
%U https://doi.org/10.1088/1748-9326/ac1222
%P 084051
Markdown (Informal)
[Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada](https://gwf-uwaterloo.github.io/gwf-publications/G21-101001) (Watts et al., GWF 2021)
ACL
- Jennifer D. Watts, Susan M. Natali, Christina Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, E. S. Euskirchen, Adrian V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, Walter C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, et al.. 2021. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters, Volume 16, Issue 8, 16(8):084051.