Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Wai-Yin Stephen Chan, Sigrid Dengel, Sébastien Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, Nathaniel A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroyasu Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, Beverly E. Law, Xuhui Lee, M. E. Litvak, Heping Li, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, William L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart-Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, J. D. Wood, Donatella Zona
Abstract
• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.- Cite:
- Housen Chu, Xiangzhong Luo, Zutao Ouyang, Wai-Yin Stephen Chan, Sigrid Dengel, Sébastien Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, et al.. 2021. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, Volume 301-302, 301:108350.
- Copy Citation:
Export citation
@article{Chu-2021-Representativeness, title = "Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites", author = {Chu, Housen and Luo, Xiangzhong and Ouyang, Zutao and Chan, Wai-Yin Stephen and Dengel, Sigrid and Biraud, S{\'e}bastien and Torn, M. S. and Metzger, Stefan and Kumar, Jitendra and Arain, M. Altaf and Arkebauer, T. J. and Baldocchi, Dennis and Bernacchi, Carl J. and Billesbach, D. P. and Black, T. Andrew and Blanken, Peter D. and Bohrer, Gil and Bracho, Rosvel and Brown, Scott and Brunsell, Nathaniel A. and Chen, Jiquan and Chen, Xingyuan and Clark, Kenneth L. and Desai, Ankur R. and Duman, Tomer and Durden, David and Fares, Silvano and Forbrich, Inke and Gamon, John A. and Gough, Christopher M. and Griffis, Timothy J. and Helbig, Manuel and Hollinger, David Y. and Humphreys, Elyn and Ikawa, Hiroki and Iwata, Hiroyasu and Ju, Yang and Knowles, John F. and Knox, Sara and Kobayashi, Hideki and Kolb, Thomas E. and Law, Beverly E. and Lee, Xuhui and Litvak, M. E. and Li, Heping and Munger, J. William and Noormets, Asko and Novick, Kim and Oberbauer, Steven F. and Oechel, Walter C. and Oikawa, Patricia Y. and Papuga, S. A. and Pendall, Elise and Prajapati, Prajaya and Prueger, John H. and Quinton, William L. and Richardson, Andrew D. and Russell, Eric S. and Scott, Russell L. and Starr, Gregory and Staebler, R. M. and Stoy, Paul C. and Stuart-Ha{\"e}ntjens, Ellen and Sonnentag, Oliver and Sullivan, Ryan C. and Suyker, Andy and Ueyama, Masahito and Vargas, Rodrigo and Wood, J. D. and Zona, Donatella}, journal = "Agricultural and Forest Meteorology, Volume 301-302", volume = "301", year = "2021", publisher = "Elsevier BV", url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-165001", doi = "10.1016/j.agrformet.2021.108350", pages = "108350", abstract = "{\mbox{$\bullet$}} Large-scale eddy-covariance flux datasets need to be used with footprint-awareness {\mbox{$\bullet$}} Using a fixed-extent target area across sites can bias model-data integration {\mbox{$\bullet$}} Most sites do not represent the dominant land-cover type at a larger spatial extent {\mbox{$\bullet$}} A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints{---}the temporally dynamic source areas that contribute to measured fluxes{---}and the representativeness of these footprints for target areas (e.g., within 250{--}3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80{\%} footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4{\%}{--}20{\%} for EVI and 6{\%}{--}20{\%} for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Chu-2021-Representativeness"> <titleInfo> <title>Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites</title> </titleInfo> <name type="personal"> <namePart type="given">Housen</namePart> <namePart type="family">Chu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xiangzhong</namePart> <namePart type="family">Luo</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zutao</namePart> <namePart type="family">Ouyang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Wai-Yin</namePart> <namePart type="given">Stephen</namePart> <namePart type="family">Chan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sigrid</namePart> <namePart type="family">Dengel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sébastien</namePart> <namePart type="family">Biraud</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">S</namePart> <namePart type="family">Torn</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefan</namePart> <namePart type="family">Metzger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jitendra</namePart> <namePart type="family">Kumar</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">Altaf</namePart> <namePart type="family">Arain</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">T</namePart> <namePart type="given">J</namePart> <namePart type="family">Arkebauer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Dennis</namePart> <namePart type="family">Baldocchi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carl</namePart> <namePart type="given">J</namePart> <namePart type="family">Bernacchi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">D</namePart> <namePart type="given">P</namePart> <namePart type="family">Billesbach</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">T</namePart> <namePart type="given">Andrew</namePart> <namePart type="family">Black</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Peter</namePart> <namePart type="given">D</namePart> <namePart type="family">Blanken</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gil</namePart> <namePart type="family">Bohrer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rosvel</namePart> <namePart type="family">Bracho</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Scott</namePart> <namePart type="family">Brown</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nathaniel</namePart> <namePart type="given">A</namePart> <namePart type="family">Brunsell</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jiquan</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xingyuan</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kenneth</namePart> <namePart type="given">L</namePart> <namePart type="family">Clark</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ankur</namePart> <namePart type="given">R</namePart> <namePart type="family">Desai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tomer</namePart> <namePart type="family">Duman</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Durden</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Silvano</namePart> <namePart type="family">Fares</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Inke</namePart> <namePart type="family">Forbrich</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">A</namePart> <namePart type="family">Gamon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="given">M</namePart> <namePart type="family">Gough</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Timothy</namePart> <namePart type="given">J</namePart> <namePart type="family">Griffis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Manuel</namePart> <namePart type="family">Helbig</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="given">Y</namePart> <namePart type="family">Hollinger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elyn</namePart> <namePart type="family">Humphreys</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroki</namePart> <namePart type="family">Ikawa</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroyasu</namePart> <namePart type="family">Iwata</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yang</namePart> <namePart type="family">Ju</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">F</namePart> <namePart type="family">Knowles</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Knox</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hideki</namePart> <namePart type="family">Kobayashi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="given">E</namePart> <namePart type="family">Kolb</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Beverly</namePart> <namePart type="given">E</namePart> <namePart type="family">Law</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xuhui</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">M</namePart> <namePart type="given">E</namePart> <namePart type="family">Litvak</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heping</namePart> <namePart type="family">Li</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="given">William</namePart> <namePart type="family">Munger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Asko</namePart> <namePart type="family">Noormets</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kim</namePart> <namePart type="family">Novick</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Steven</namePart> <namePart type="given">F</namePart> <namePart type="family">Oberbauer</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Walter</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patricia</namePart> <namePart type="given">Y</namePart> <namePart type="family">Oikawa</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">S</namePart> <namePart type="given">A</namePart> <namePart type="family">Papuga</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elise</namePart> <namePart type="family">Pendall</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Prajaya</namePart> <namePart type="family">Prajapati</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">H</namePart> <namePart type="family">Prueger</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">William</namePart> <namePart type="given">L</namePart> <namePart type="family">Quinton</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andrew</namePart> <namePart type="given">D</namePart> <namePart type="family">Richardson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eric</namePart> <namePart type="given">S</namePart> <namePart type="family">Russell</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Russell</namePart> <namePart type="given">L</namePart> <namePart type="family">Scott</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gregory</namePart> <namePart type="family">Starr</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">R</namePart> <namePart type="given">M</namePart> <namePart type="family">Staebler</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paul</namePart> <namePart type="given">C</namePart> <namePart type="family">Stoy</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ellen</namePart> <namePart type="family">Stuart-Haëntjens</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ryan</namePart> <namePart type="given">C</namePart> <namePart type="family">Sullivan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andy</namePart> <namePart type="family">Suyker</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masahito</namePart> <namePart type="family">Ueyama</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rodrigo</namePart> <namePart type="family">Vargas</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">J</namePart> <namePart type="given">D</namePart> <namePart type="family">Wood</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Agricultural and Forest Meteorology, Volume 301-302</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>Elsevier BV</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>\bullet Large-scale eddy-covariance flux datasets need to be used with footprint-awareness \bullet Using a fixed-extent target area across sites can bias model-data integration \bullet Most sites do not represent the dominant land-cover type at a larger spatial extent \bullet A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.</abstract> <identifier type="citekey">Chu-2021-Representativeness</identifier> <identifier type="doi">10.1016/j.agrformet.2021.108350</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G21-165001</url> </location> <part> <date>2021</date> <detail type="volume"><number>301</number></detail> <detail type="page"><number>108350</number></detail> </part> </mods> </modsCollection>
%0 Journal Article %T Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites %A Chu, Housen %A Luo, Xiangzhong %A Ouyang, Zutao %A Chan, Wai-Yin Stephen %A Dengel, Sigrid %A Biraud, Sébastien %A Torn, M. S. %A Metzger, Stefan %A Kumar, Jitendra %A Arain, M. Altaf %A Arkebauer, T. J. %A Baldocchi, Dennis %A Bernacchi, Carl J. %A Billesbach, D. P. %A Black, T. Andrew %A Blanken, Peter D. %A Bohrer, Gil %A Bracho, Rosvel %A Brown, Scott %A Brunsell, Nathaniel A. %A Chen, Jiquan %A Chen, Xingyuan %A Clark, Kenneth L. %A Desai, Ankur R. %A Duman, Tomer %A Durden, David %A Fares, Silvano %A Forbrich, Inke %A Gamon, John A. %A Gough, Christopher M. %A Griffis, Timothy J. %A Helbig, Manuel %A Hollinger, David Y. %A Humphreys, Elyn %A Ikawa, Hiroki %A Iwata, Hiroyasu %A Ju, Yang %A Knowles, John F. %A Knox, Sara %A Kobayashi, Hideki %A Kolb, Thomas E. %A Law, Beverly E. %A Lee, Xuhui %A Litvak, M. E. %A Li, Heping %A Munger, J. William %A Noormets, Asko %A Novick, Kim %A Oberbauer, Steven F. %A Oechel, Walter C. %A Oikawa, Patricia Y. %A Papuga, S. A. %A Pendall, Elise %A Prajapati, Prajaya %A Prueger, John H. %A Quinton, William L. %A Richardson, Andrew D. %A Russell, Eric S. %A Scott, Russell L. %A Starr, Gregory %A Staebler, R. M. %A Stoy, Paul C. %A Stuart-Haëntjens, Ellen %A Sonnentag, Oliver %A Sullivan, Ryan C. %A Suyker, Andy %A Ueyama, Masahito %A Vargas, Rodrigo %A Wood, J. D. %A Zona, Donatella %J Agricultural and Forest Meteorology, Volume 301-302 %D 2021 %V 301 %I Elsevier BV %F Chu-2021-Representativeness %X \bullet Large-scale eddy-covariance flux datasets need to be used with footprint-awareness \bullet Using a fixed-extent target area across sites can bias model-data integration \bullet Most sites do not represent the dominant land-cover type at a larger spatial extent \bullet A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use. %R 10.1016/j.agrformet.2021.108350 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-165001 %U https://doi.org/10.1016/j.agrformet.2021.108350 %P 108350
Markdown (Informal)
[Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites](https://gwf-uwaterloo.github.io/gwf-publications/G21-165001) (Chu et al., GWF 2021)
- Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites (Chu et al., GWF 2021)
ACL
- Housen Chu, Xiangzhong Luo, Zutao Ouyang, Wai-Yin Stephen Chan, Sigrid Dengel, Sébastien Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, et al.. 2021. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, Volume 301-302, 301:108350.