The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change
Kunfu Pi, Magdalena Bieroza, Anatoli Brouchkov, Weitao Chen, Louis Dufour, Konstantin B. Gongalsky, Anke M. Herrmann, Eveline J. Krab, Catherine Landesman, Anniet M. Laverman, Natalia Mazei, Yuri Mazei, Mats Öquist, Matthias Peichl, S. Pozdniakov, Fereidoun Rezanezhad, Céline Roose‐Amsaleg, Anastasia Shatilovich, Andong Shi, C. M. Smeaton, Lei Tong, Andrey N. Tsyganov, Philippe Van Cappellen
Abstract
Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions’ landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions’ critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.- Cite:
- Kunfu Pi, Magdalena Bieroza, Anatoli Brouchkov, Weitao Chen, Louis Dufour, Konstantin B. Gongalsky, Anke M. Herrmann, Eveline J. Krab, Catherine Landesman, Anniet M. Laverman, Natalia Mazei, Yuri Mazei, Mats Öquist, Matthias Peichl, S. Pozdniakov, Fereidoun Rezanezhad, Céline Roose‐Amsaleg, Anastasia Shatilovich, Andong Shi, et al.. 2021. The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change. Annual Review of Environment and Resources, Volume 46, Issue 1, 46(1):111–134.
- Copy Citation:
Export citation
@article{Pi-2021-The,
title = "The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change",
author = {Pi, Kunfu and
Bieroza, Magdalena and
Brouchkov, Anatoli and
Chen, Weitao and
Dufour, Louis and
Gongalsky, Konstantin B. and
Herrmann, Anke M. and
Krab, Eveline J. and
Landesman, Catherine and
Laverman, Anniet M. and
Mazei, Natalia and
Mazei, Yuri and
{\"O}quist, Mats and
Peichl, Matthias and
Pozdniakov, S. and
Rezanezhad, Fereidoun and
Roose‐Amsaleg, C{\'e}line and
Shatilovich, Anastasia and
Shi, Andong and
Smeaton, C. M. and
Tong, Lei and
Tsyganov, Andrey N. and
Cappellen, Philippe Van},
journal = "Annual Review of Environment and Resources, Volume 46, Issue 1",
volume = "46",
number = "1",
year = "2021",
publisher = "Annual Reviews",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-54001",
doi = "10.1146/annurev-environ-012220-125703",
pages = "111--134",
abstract = "Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions{'} landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions{'} critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Pi-2021-The">
<titleInfo>
<title>The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kunfu</namePart>
<namePart type="family">Pi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Magdalena</namePart>
<namePart type="family">Bieroza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anatoli</namePart>
<namePart type="family">Brouchkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weitao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louis</namePart>
<namePart type="family">Dufour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantin</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Gongalsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anke</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Herrmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eveline</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Krab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Landesman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anniet</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Laverman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Mazei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Mazei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mats</namePart>
<namePart type="family">Öquist</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Peichl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Pozdniakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fereidoun</namePart>
<namePart type="family">Rezanezhad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Céline</namePart>
<namePart type="family">Roose‐Amsaleg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shatilovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andong</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Smeaton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Tong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Tsyganov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="given">Van</namePart>
<namePart type="family">Cappellen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Annual Review of Environment and Resources, Volume 46, Issue 1</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Annual Reviews</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions’ landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions’ critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems.</abstract>
<identifier type="citekey">Pi-2021-The</identifier>
<identifier type="doi">10.1146/annurev-environ-012220-125703</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G21-54001</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>46</number></detail>
<detail type="issue"><number>1</number></detail>
<extent unit="page">
<start>111</start>
<end>134</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article %T The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change %A Pi, Kunfu %A Bieroza, Magdalena %A Brouchkov, Anatoli %A Chen, Weitao %A Dufour, Louis %A Gongalsky, Konstantin B. %A Herrmann, Anke M. %A Krab, Eveline J. %A Landesman, Catherine %A Laverman, Anniet M. %A Mazei, Natalia %A Mazei, Yuri %A Öquist, Mats %A Peichl, Matthias %A Pozdniakov, S. %A Rezanezhad, Fereidoun %A Roose‐Amsaleg, Céline %A Shatilovich, Anastasia %A Shi, Andong %A Smeaton, C. M. %A Tong, Lei %A Tsyganov, Andrey N. %A Cappellen, Philippe Van %J Annual Review of Environment and Resources, Volume 46, Issue 1 %D 2021 %V 46 %N 1 %I Annual Reviews %F Pi-2021-The %X Global climate warming disproportionately affects high-latitude and mountainous terrestrial ecosystems. Warming is accompanied by permafrost thaw, shorter winters, earlier snowmelt, more intense soil freeze-thaw cycles, drier summers, and longer fire seasons. These environmental changes in turn impact surface water and groundwater flow regimes, water quality, greenhouse gas emissions, soil stability, vegetation cover, and soil (micro)biological communities. Warming also facilitates agricultural expansion, urban growth, and natural resource development, adding growing anthropogenic pressures to cold regions’ landscapes, soil health, and biodiversity. Further advances in the predictive understanding of how cold regions’ critical zone processes, functions, and ecosystem services will continue to respond to climate warming and land use changes require multiscale monitoring technologies coupled with integrated observational and modeling tools. We highlight some of the major challenges, knowledge gaps, and opportunities in cold region critical zone research, with an emphasis on subsurface processes and responses in both natural and agricultural ecosystems. %R 10.1146/annurev-environ-012220-125703 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-54001 %U https://doi.org/10.1146/annurev-environ-012220-125703 %P 111-134
Markdown (Informal)
[The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change](https://gwf-uwaterloo.github.io/gwf-publications/G21-54001) (Pi et al., GWF 2021)
- The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change (Pi et al., GWF 2021)
ACL
- Kunfu Pi, Magdalena Bieroza, Anatoli Brouchkov, Weitao Chen, Louis Dufour, Konstantin B. Gongalsky, Anke M. Herrmann, Eveline J. Krab, Catherine Landesman, Anniet M. Laverman, Natalia Mazei, Yuri Mazei, Mats Öquist, Matthias Peichl, S. Pozdniakov, Fereidoun Rezanezhad, Céline Roose‐Amsaleg, Anastasia Shatilovich, Andong Shi, et al.. 2021. The Cold Region Critical Zone in Transition: Responses to Climate Warming and Land Use Change. Annual Review of Environment and Resources, Volume 46, Issue 1, 46(1):111–134.