Scientific and Human Errors in a Snow Model Intercomparison
Cécile B. Ménard, Richard Essery, Gerhard Krinner, Gabriele Arduini, Paul Bartlett, Aaron Boone, Claire Brutel‐Vuilmet, Eleanor Burke, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Emanuel Dutra, Xing Fang, Charles Fierz, Yeugeniy M. Gusev, Stefan Hagemann, Vanessa Haverd, Hyungjun Kim, Matthieu Lafaysse, Thomas Marke, О. Н. Насонова, Tomoko Nitta, Michio Niwano, John W. Pomeroy, Gerd Schädler, В. А. Семенов, Tatiana G. Smirnova, Ulrich Strasser, Sean Swenson, Dmitry Turkov, Nander Wever, Hua Yuan
Abstract
Abstract Twenty-seven models participated in the Earth System Model–Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modeling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations are problematic, and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behavior and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community.- Cite:
- Cécile B. Ménard, Richard Essery, Gerhard Krinner, Gabriele Arduini, Paul Bartlett, Aaron Boone, Claire Brutel‐Vuilmet, Eleanor Burke, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Emanuel Dutra, Xing Fang, Charles Fierz, Yeugeniy M. Gusev, Stefan Hagemann, Vanessa Haverd, Hyungjun Kim, Matthieu Lafaysse, et al.. 2021. Scientific and Human Errors in a Snow Model Intercomparison. Bulletin of the American Meteorological Society, Volume 102, Issue 1, 102(1):E61–E79.
- Copy Citation:
Export citation
@article{Menard-2021-Scientific, title = "Scientific and Human Errors in a Snow Model Intercomparison", author = {M{\'e}nard, C{\'e}cile B. and Essery, Richard and Krinner, Gerhard and Arduini, Gabriele and Bartlett, Paul and Boone, Aaron and Brutel‐Vuilmet, Claire and Burke, Eleanor and Cuntz, Matthias and Dai, Yongjiu and Decharme, Bertrand and Dutra, Emanuel and Fang, Xing and Fierz, Charles and Gusev, Yeugeniy M. and Hagemann, Stefan and Haverd, Vanessa and Kim, Hyungjun and Lafaysse, Matthieu and Marke, Thomas and Насонова, О. Н. and Nitta, Tomoko and Niwano, Michio and Pomeroy, John W. and Sch{\"a}dler, Gerd and Семенов, В. А. and Smirnova, Tatiana G. and Strasser, Ulrich and Swenson, Sean and Turkov, Dmitry and Wever, Nander and Yuan, Hua}, journal = "Bulletin of the American Meteorological Society, Volume 102, Issue 1", volume = "102", number = "1", year = "2021", publisher = "American Meteorological Society", url = "https://gwf-uwaterloo.github.io/gwf-publications/G21-55001", doi = "10.1175/bams-d-19-0329.1", pages = "E61--E79", abstract = "Abstract Twenty-seven models participated in the Earth System Model{--}Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modeling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations are problematic, and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behavior and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="Menard-2021-Scientific"> <titleInfo> <title>Scientific and Human Errors in a Snow Model Intercomparison</title> </titleInfo> <name type="personal"> <namePart type="given">Cécile</namePart> <namePart type="given">B</namePart> <namePart type="family">Ménard</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Richard</namePart> <namePart type="family">Essery</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gerhard</namePart> <namePart type="family">Krinner</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gabriele</namePart> <namePart type="family">Arduini</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paul</namePart> <namePart type="family">Bartlett</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aaron</namePart> <namePart type="family">Boone</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Claire</namePart> <namePart type="family">Brutel‐Vuilmet</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eleanor</namePart> <namePart type="family">Burke</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Cuntz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yongjiu</namePart> <namePart type="family">Dai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bertrand</namePart> <namePart type="family">Decharme</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Emanuel</namePart> <namePart type="family">Dutra</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xing</namePart> <namePart type="family">Fang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Charles</namePart> <namePart type="family">Fierz</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yeugeniy</namePart> <namePart type="given">M</namePart> <namePart type="family">Gusev</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stefan</namePart> <namePart type="family">Hagemann</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vanessa</namePart> <namePart type="family">Haverd</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hyungjun</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthieu</namePart> <namePart type="family">Lafaysse</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Thomas</namePart> <namePart type="family">Marke</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">О.</namePart> <namePart type="given">Н.</namePart> <namePart type="family">Насонова</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tomoko</namePart> <namePart type="family">Nitta</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Michio</namePart> <namePart type="family">Niwano</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">W</namePart> <namePart type="family">Pomeroy</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gerd</namePart> <namePart type="family">Schädler</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">В.</namePart> <namePart type="given">А.</namePart> <namePart type="family">Семенов</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tatiana</namePart> <namePart type="given">G</namePart> <namePart type="family">Smirnova</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ulrich</namePart> <namePart type="family">Strasser</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sean</namePart> <namePart type="family">Swenson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Dmitry</namePart> <namePart type="family">Turkov</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nander</namePart> <namePart type="family">Wever</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hua</namePart> <namePart type="family">Yuan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>Bulletin of the American Meteorological Society, Volume 102, Issue 1</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>American Meteorological Society</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Abstract Twenty-seven models participated in the Earth System Model–Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modeling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations are problematic, and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behavior and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community.</abstract> <identifier type="citekey">Menard-2021-Scientific</identifier> <identifier type="doi">10.1175/bams-d-19-0329.1</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G21-55001</url> </location> <part> <date>2021</date> <detail type="volume"><number>102</number></detail> <detail type="issue"><number>1</number></detail> <extent unit="page"> <start>E61</start> <end>E79</end> </extent> </part> </mods> </modsCollection>
%0 Journal Article %T Scientific and Human Errors in a Snow Model Intercomparison %A Ménard, Cécile B. %A Essery, Richard %A Krinner, Gerhard %A Arduini, Gabriele %A Bartlett, Paul %A Boone, Aaron %A Brutel‐Vuilmet, Claire %A Burke, Eleanor %A Cuntz, Matthias %A Dai, Yongjiu %A Decharme, Bertrand %A Dutra, Emanuel %A Fang, Xing %A Fierz, Charles %A Gusev, Yeugeniy M. %A Hagemann, Stefan %A Haverd, Vanessa %A Kim, Hyungjun %A Lafaysse, Matthieu %A Marke, Thomas %A Насонова, О. Н. %A Nitta, Tomoko %A Niwano, Michio %A Pomeroy, John W. %A Schädler, Gerd %A Семенов, В. А. %A Smirnova, Tatiana G. %A Strasser, Ulrich %A Swenson, Sean %A Turkov, Dmitry %A Wever, Nander %A Yuan, Hua %J Bulletin of the American Meteorological Society, Volume 102, Issue 1 %D 2021 %V 102 %N 1 %I American Meteorological Society %F Menard-2021-Scientific %X Abstract Twenty-seven models participated in the Earth System Model–Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modeling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables and providing evaluation datasets extended temporally and spatially does not facilitate identification of key new processes requiring improvement to model snow mass and energy budgets, even at point scales. In fact, the same modeling issues identified by previous snow MIPs arose: albedo is a major source of uncertainty, surface exchange parameterizations are problematic, and individual model performance is inconsistent. This lack of progress is attributed partly to the large number of human errors that led to anomalous model behavior and to numerous resubmissions. It is unclear how widespread such errors are in our field and others; dedicated time and resources will be needed to tackle this issue to prevent highly sophisticated models and their research outputs from being vulnerable because of avoidable human mistakes. The design of and the data available to successive snow MIPs were also questioned. Evaluation of models against bulk snow properties was found to be sufficient for some but inappropriate for more complex snow models whose skills at simulating internal snow properties remained untested. Discussions between the authors of this paper on the purpose of MIPs revealed varied, and sometimes contradictory, motivations behind their participation. These findings started a collaborative effort to adapt future snow MIPs to respond to the diverse needs of the community. %R 10.1175/bams-d-19-0329.1 %U https://gwf-uwaterloo.github.io/gwf-publications/G21-55001 %U https://doi.org/10.1175/bams-d-19-0329.1 %P E61-E79
Markdown (Informal)
[Scientific and Human Errors in a Snow Model Intercomparison](https://gwf-uwaterloo.github.io/gwf-publications/G21-55001) (Ménard et al., GWF 2021)
- Scientific and Human Errors in a Snow Model Intercomparison (Ménard et al., GWF 2021)
ACL
- Cécile B. Ménard, Richard Essery, Gerhard Krinner, Gabriele Arduini, Paul Bartlett, Aaron Boone, Claire Brutel‐Vuilmet, Eleanor Burke, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Emanuel Dutra, Xing Fang, Charles Fierz, Yeugeniy M. Gusev, Stefan Hagemann, Vanessa Haverd, Hyungjun Kim, Matthieu Lafaysse, et al.. 2021. Scientific and Human Errors in a Snow Model Intercomparison. Bulletin of the American Meteorological Society, Volume 102, Issue 1, 102(1):E61–E79.