@article{Tang-2022-EM-Earth:,
title = "EM-Earth: The Ensemble Meteorological Dataset for Planet Earth",
author = "Tang, Guoqiang and
Clark, Martyn P. and
Papalexiou, Simon Michael",
journal = "Bulletin of the American Meteorological Society, Volume 103, Issue 4",
volume = "103",
number = "4",
year = "2022",
publisher = "American Meteorological Society",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G22-34001",
doi = "10.1175/bams-d-21-0106.1",
pages = "E996--E1018",
abstract = "Abstract Gridded meteorological estimates are essential for many applications. Most existing meteorological datasets are deterministic and have limitations in representing the inherent uncertainties from both the data and methodology used to create gridded products. We develop the Ensemble Meteorological Dataset for Planet Earth (EM-Earth) for precipitation, mean daily temperature, daily temperature range, and dewpoint temperature at 0.1{\mbox{$^\circ$}} spatial resolution over global land areas from 1950 to 2019. EM-Earth provides hourly/daily deterministic estimates, and daily probabilistic estimates (25 ensemble members), to meet the diverse requirements of hydrometeorological applications. To produce EM-Earth, we first developed a station-based Serially Complete Earth (SC-Earth) dataset, which removes the temporal discontinuities in raw station observations. Then, we optimally merged SC-Earth station data and ERA5 estimates to generate EM-Earth deterministic estimates and their uncertainties. The EM-Earth ensemble members are produced by sampling from parametric probability distributions using spatiotemporally correlated random fields. The EM-Earth dataset is evaluated by leave-one-out validation, using independent evaluation stations, and comparing it with many widely used datasets. The results show that EM-Earth is better in Europe, North America, and Oceania than in Africa, Asia, and South America, mainly due to differences in the available stations and differences in climate conditions. Probabilistic spatial meteorological datasets are particularly valuable in regions with large meteorological uncertainties, where almost all existing deterministic datasets face great challenges in obtaining accurate estimates.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Tang-2022-EM-Earth:">
<titleInfo>
<title>EM-Earth: The Ensemble Meteorological Dataset for Planet Earth</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guoqiang</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martyn</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="given">Michael</namePart>
<namePart type="family">Papalexiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Bulletin of the American Meteorological Society, Volume 103, Issue 4</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>American Meteorological Society</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Abstract Gridded meteorological estimates are essential for many applications. Most existing meteorological datasets are deterministic and have limitations in representing the inherent uncertainties from both the data and methodology used to create gridded products. We develop the Ensemble Meteorological Dataset for Planet Earth (EM-Earth) for precipitation, mean daily temperature, daily temperature range, and dewpoint temperature at 0.1° spatial resolution over global land areas from 1950 to 2019. EM-Earth provides hourly/daily deterministic estimates, and daily probabilistic estimates (25 ensemble members), to meet the diverse requirements of hydrometeorological applications. To produce EM-Earth, we first developed a station-based Serially Complete Earth (SC-Earth) dataset, which removes the temporal discontinuities in raw station observations. Then, we optimally merged SC-Earth station data and ERA5 estimates to generate EM-Earth deterministic estimates and their uncertainties. The EM-Earth ensemble members are produced by sampling from parametric probability distributions using spatiotemporally correlated random fields. The EM-Earth dataset is evaluated by leave-one-out validation, using independent evaluation stations, and comparing it with many widely used datasets. The results show that EM-Earth is better in Europe, North America, and Oceania than in Africa, Asia, and South America, mainly due to differences in the available stations and differences in climate conditions. Probabilistic spatial meteorological datasets are particularly valuable in regions with large meteorological uncertainties, where almost all existing deterministic datasets face great challenges in obtaining accurate estimates.</abstract>
<identifier type="citekey">Tang-2022-EM-Earth:</identifier>
<identifier type="doi">10.1175/bams-d-21-0106.1</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G22-34001</url>
</location>
<part>
<date>2022</date>
<detail type="volume"><number>103</number></detail>
<detail type="issue"><number>4</number></detail>
<extent unit="page">
<start>E996</start>
<end>E1018</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T EM-Earth: The Ensemble Meteorological Dataset for Planet Earth
%A Tang, Guoqiang
%A Clark, Martyn P.
%A Papalexiou, Simon Michael
%J Bulletin of the American Meteorological Society, Volume 103, Issue 4
%D 2022
%V 103
%N 4
%I American Meteorological Society
%F Tang-2022-EM-Earth:
%X Abstract Gridded meteorological estimates are essential for many applications. Most existing meteorological datasets are deterministic and have limitations in representing the inherent uncertainties from both the data and methodology used to create gridded products. We develop the Ensemble Meteorological Dataset for Planet Earth (EM-Earth) for precipitation, mean daily temperature, daily temperature range, and dewpoint temperature at 0.1° spatial resolution over global land areas from 1950 to 2019. EM-Earth provides hourly/daily deterministic estimates, and daily probabilistic estimates (25 ensemble members), to meet the diverse requirements of hydrometeorological applications. To produce EM-Earth, we first developed a station-based Serially Complete Earth (SC-Earth) dataset, which removes the temporal discontinuities in raw station observations. Then, we optimally merged SC-Earth station data and ERA5 estimates to generate EM-Earth deterministic estimates and their uncertainties. The EM-Earth ensemble members are produced by sampling from parametric probability distributions using spatiotemporally correlated random fields. The EM-Earth dataset is evaluated by leave-one-out validation, using independent evaluation stations, and comparing it with many widely used datasets. The results show that EM-Earth is better in Europe, North America, and Oceania than in Africa, Asia, and South America, mainly due to differences in the available stations and differences in climate conditions. Probabilistic spatial meteorological datasets are particularly valuable in regions with large meteorological uncertainties, where almost all existing deterministic datasets face great challenges in obtaining accurate estimates.
%R 10.1175/bams-d-21-0106.1
%U https://gwf-uwaterloo.github.io/gwf-publications/G22-34001
%U https://doi.org/10.1175/bams-d-21-0106.1
%P E996-E1018
Markdown (Informal)
[EM-Earth: The Ensemble Meteorological Dataset for Planet Earth](https://gwf-uwaterloo.github.io/gwf-publications/G22-34001) (Tang et al., GWF 2022)
ACL
- Guoqiang Tang, Martyn P. Clark, and Simon Michael Papalexiou. 2022. EM-Earth: The Ensemble Meteorological Dataset for Planet Earth. Bulletin of the American Meteorological Society, Volume 103, Issue 4, 103(4):E996–E1018.