@article{Shen-2023-Differentiable,
title = "Differentiable modelling to unify machine learning and physical models for geosciences",
author = {Shen, Chaopeng and
Appling, Alison and
Gentine, Pierre and
Bandai, Toshiyuki and
Gupta, Hoshin V. and
Tartakovsky, Alexandre M. and
Baity‐Jesi, Marco and
Fenicia, Fabrizio and
Kifer, Daniel and
Li, Li and
Liu, Xiaofeng and
Ren, Wei and
Zheng, Yi and
Harman, C. J. and
Clark, Martyn and
Farthing, Matthew W. and
Feng, Dapeng and
Kumar, Praveen and
Aboelyazeed, Doaa and
Rahmani, Farshid and
Song, Yalan and
Beck, Hylke E. and
Bindas, Tadd and
Dwivedi, Dipankar and
Fang, Kuai and
H{\"o}ge, Marvin and
Rackauckas, Christopher and
Mohanty, Binayak P. and
Roy, Tirthankar and
Xu, Chonggang and
Lawson, Kathryn and
Shen, Chaopeng and
Appling, Alison and
Gentine, Pierre and
Bandai, Toshiyuki and
Gupta, Hoshin V. and
Tartakovsky, Alexandre M. and
Baity‐Jesi, Marco and
Fenicia, Fabrizio and
Kifer, Daniel and
Li, Li and
Liu, Xiaofeng and
Ren, Wei and
Zheng, Yi and
Harman, C. J. and
Clark, Martyn and
Farthing, Matthew W. and
Feng, Dapeng and
Kumar, Praveen and
Aboelyazeed, Doaa and
Rahmani, Farshid and
Song, Yalan and
Beck, Hylke E. and
Bindas, Tadd and
Dwivedi, Dipankar and
Fang, Kuai and
H{\"o}ge, Marvin and
Rackauckas, Christopher and
Mohanty, Binayak P. and
Roy, Tirthankar and
Xu, Chonggang and
Lawson, Kathryn},
journal = "Nature Reviews Earth {\&} Environment, Volume 4, Issue 8",
volume = "4",
number = "8",
year = "2023",
publisher = "Springer Science and Business Media LLC",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G23-27001",
doi = "10.1038/s43017-023-00450-9",
pages = "552--567",
abstract = "Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. {`}Differentiable{'} refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Shen-2023-Differentiable">
<titleInfo>
<title>Differentiable modelling to unify machine learning and physical models for geosciences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chaopeng</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alison</namePart>
<namePart type="family">Appling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Gentine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiyuki</namePart>
<namePart type="family">Bandai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hoshin</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Tartakovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Baity‐Jesi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabrizio</namePart>
<namePart type="family">Fenicia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Kifer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Harman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martyn</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Farthing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dapeng</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Praveen</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doaa</namePart>
<namePart type="family">Aboelyazeed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farshid</namePart>
<namePart type="family">Rahmani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yalan</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hylke</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tadd</namePart>
<namePart type="family">Bindas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipankar</namePart>
<namePart type="family">Dwivedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuai</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marvin</namePart>
<namePart type="family">Höge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Rackauckas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binayak</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Mohanty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chonggang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathryn</namePart>
<namePart type="family">Lawson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature Reviews Earth & Environment, Volume 4, Issue 8</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Springer Science and Business Media LLC</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.</abstract>
<identifier type="citekey">Shen-2023-Differentiable</identifier>
<identifier type="doi">10.1038/s43017-023-00450-9</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G23-27001</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>4</number></detail>
<detail type="issue"><number>8</number></detail>
<extent unit="page">
<start>552</start>
<end>567</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Differentiable modelling to unify machine learning and physical models for geosciences
%A Shen, Chaopeng
%A Appling, Alison
%A Gentine, Pierre
%A Bandai, Toshiyuki
%A Gupta, Hoshin V.
%A Tartakovsky, Alexandre M.
%A Baity‐Jesi, Marco
%A Fenicia, Fabrizio
%A Kifer, Daniel
%A Li, Li
%A Liu, Xiaofeng
%A Ren, Wei
%A Zheng, Yi
%A Harman, C. J.
%A Clark, Martyn
%A Farthing, Matthew W.
%A Feng, Dapeng
%A Kumar, Praveen
%A Aboelyazeed, Doaa
%A Rahmani, Farshid
%A Song, Yalan
%A Beck, Hylke E.
%A Bindas, Tadd
%A Dwivedi, Dipankar
%A Fang, Kuai
%A Höge, Marvin
%A Rackauckas, Christopher
%A Mohanty, Binayak P.
%A Roy, Tirthankar
%A Xu, Chonggang
%A Lawson, Kathryn
%J Nature Reviews Earth & Environment, Volume 4, Issue 8
%D 2023
%V 4
%N 8
%I Springer Science and Business Media LLC
%F Shen-2023-Differentiable
%X Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
%R 10.1038/s43017-023-00450-9
%U https://gwf-uwaterloo.github.io/gwf-publications/G23-27001
%U https://doi.org/10.1038/s43017-023-00450-9
%P 552-567
Markdown (Informal)
[Differentiable modelling to unify machine learning and physical models for geosciences](https://gwf-uwaterloo.github.io/gwf-publications/G23-27001) (Shen et al., GWF 2023)
ACL
- Chaopeng Shen, Alison Appling, Pierre Gentine, Toshiyuki Bandai, Hoshin V. Gupta, Alexandre M. Tartakovsky, Marco Baity‐Jesi, Fabrizio Fenicia, Daniel Kifer, Li Li, Xiaofeng Liu, Wei Ren, Yi Zheng, C. J. Harman, Martyn Clark, Matthew W. Farthing, Dapeng Feng, Praveen Kumar, Doaa Aboelyazeed, et al.. 2023. Differentiable modelling to unify machine learning and physical models for geosciences. Nature Reviews Earth & Environment, Volume 4, Issue 8, 4(8):552–567.