Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison
Gavin McNicol, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Zhen Zhang, Tuula Aalto, Sheel Bansal, Kuang‐Yu Chang, Min Chen, Kyle Delwiche, Sarah Féron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, W. J. Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Ying, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur R. Desai, E. S. Euskirchen, Jordan P. Goodrich, Timothy J. Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John S. King, Franziska Koebsch, Randall K. Kolka, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Mats E Nilson, Asko Noormets, Walter C. Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva‐Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric J. Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Abstract
Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 ± 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).- Cite:
- Gavin McNicol, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Zhen Zhang, Tuula Aalto, Sheel Bansal, Kuang‐Yu Chang, Min Chen, Kyle Delwiche, Sarah Féron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, W. J. Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Ying, et al.. 2023. Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison. AGU Advances, Volume 4, Issue 5, 4(5).
- Copy Citation:
Export citation
@article{McNicol-2023-Upscaling, title = "Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison", author = "McNicol, Gavin and Fluet‐Chouinard, Etienne and Ouyang, Zutao and Knox, Sara and Zhang, Zhen and Aalto, Tuula and Bansal, Sheel and Chang, Kuang‐Yu and Chen, Min and Delwiche, Kyle and F{\'e}ron, Sarah and Goeckede, Mathias and Liu, Jinxun and Malhotra, Avni and Melton, Joe R. and Riley, W. J. and Vargas, Rodrigo and Yuan, Kunxiaojia and Ying, Qing and Zhu, Qing and Alekseychik, Pavel and Aurela, Mika and Billesbach, David P. and Campbell, David I. and Chen, Jiquan and Chu, Housen and Desai, Ankur R. and Euskirchen, E. S. and Goodrich, Jordan P. and Griffis, Timothy J. and Helbig, Manuel and Hirano, Takashi and Iwata, Hiroki and Jurasinski, Gerald and King, John S. and Koebsch, Franziska and Kolka, Randall K. and Krauss, Ken W. and Lohila, Annalea and Mammarella, Ivan and Nilson, Mats E and Noormets, Asko and Oechel, Walter C. and Peichl, Matthias and Sachs, Torsten and Sakabe, Ayaka and Schulze, Christopher and Sonnentag, Oliver and Sullivan, Ryan C. and Tuittila, Eeva‐Stiina and Ueyama, Masahito and Vesala, Timo and Ward, Eric J. and Wille, Christian and Wong, Guan Xhuan and Zona, Donatella and Windham‐Myers, L. and Poulter, Benjamin and Jackson, Robert B.", journal = "AGU Advances, Volume 4, Issue 5", volume = "4", number = "5", year = "2023", publisher = "American Geophysical Union (AGU)", url = "https://gwf-uwaterloo.github.io/gwf-publications/G23-52001", doi = "10.1029/2023av000956", abstract = "Abstract Wetlands are responsible for 20{\%}{--}31{\%} of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52{--}0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 {\mbox{$\pm$}} 43 TgCH 4 y −1 for 2001{--}2018 which agrees closely with current bottom‐up land surface models (102{--}181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155{--}200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25{\mbox{$^\circ$}} from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="McNicol-2023-Upscaling"> <titleInfo> <title>Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison</title> </titleInfo> <name type="personal"> <namePart type="given">Gavin</namePart> <namePart type="family">McNicol</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Etienne</namePart> <namePart type="family">Fluet‐Chouinard</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zutao</namePart> <namePart type="family">Ouyang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sara</namePart> <namePart type="family">Knox</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhen</namePart> <namePart type="family">Zhang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tuula</namePart> <namePart type="family">Aalto</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sheel</namePart> <namePart type="family">Bansal</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kuang‐Yu</namePart> <namePart type="family">Chang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Min</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kyle</namePart> <namePart type="family">Delwiche</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sarah</namePart> <namePart type="family">Féron</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mathias</namePart> <namePart type="family">Goeckede</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jinxun</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Avni</namePart> <namePart type="family">Malhotra</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Joe</namePart> <namePart type="given">R</namePart> <namePart type="family">Melton</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">W</namePart> <namePart type="given">J</namePart> <namePart type="family">Riley</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rodrigo</namePart> <namePart type="family">Vargas</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kunxiaojia</namePart> <namePart type="family">Yuan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Qing</namePart> <namePart type="family">Ying</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Qing</namePart> <namePart type="family">Zhu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pavel</namePart> <namePart type="family">Alekseychik</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mika</namePart> <namePart type="family">Aurela</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="given">P</namePart> <namePart type="family">Billesbach</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="given">I</namePart> <namePart type="family">Campbell</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jiquan</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Housen</namePart> <namePart type="family">Chu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ankur</namePart> <namePart type="given">R</namePart> <namePart type="family">Desai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">E</namePart> <namePart type="given">S</namePart> <namePart type="family">Euskirchen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jordan</namePart> <namePart type="given">P</namePart> <namePart type="family">Goodrich</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Timothy</namePart> <namePart type="given">J</namePart> <namePart type="family">Griffis</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Manuel</namePart> <namePart type="family">Helbig</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Takashi</namePart> <namePart type="family">Hirano</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroki</namePart> <namePart type="family">Iwata</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Gerald</namePart> <namePart type="family">Jurasinski</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="given">S</namePart> <namePart type="family">King</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Franziska</namePart> <namePart type="family">Koebsch</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Randall</namePart> <namePart type="given">K</namePart> <namePart type="family">Kolka</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ken</namePart> <namePart type="given">W</namePart> <namePart type="family">Krauss</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Annalea</namePart> <namePart type="family">Lohila</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Mammarella</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mats</namePart> <namePart type="given">E</namePart> <namePart type="family">Nilson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Asko</namePart> <namePart type="family">Noormets</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Walter</namePart> <namePart type="given">C</namePart> <namePart type="family">Oechel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Peichl</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Torsten</namePart> <namePart type="family">Sachs</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ayaka</namePart> <namePart type="family">Sakabe</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christopher</namePart> <namePart type="family">Schulze</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Oliver</namePart> <namePart type="family">Sonnentag</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ryan</namePart> <namePart type="given">C</namePart> <namePart type="family">Sullivan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eeva‐Stiina</namePart> <namePart type="family">Tuittila</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masahito</namePart> <namePart type="family">Ueyama</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Timo</namePart> <namePart type="family">Vesala</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eric</namePart> <namePart type="given">J</namePart> <namePart type="family">Ward</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Wille</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Guan</namePart> <namePart type="given">Xhuan</namePart> <namePart type="family">Wong</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Donatella</namePart> <namePart type="family">Zona</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">L</namePart> <namePart type="family">Windham‐Myers</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Benjamin</namePart> <namePart type="family">Poulter</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Robert</namePart> <namePart type="given">B</namePart> <namePart type="family">Jackson</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2023</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <genre authority="bibutilsgt">journal article</genre> <relatedItem type="host"> <titleInfo> <title>AGU Advances, Volume 4, Issue 5</title> </titleInfo> <originInfo> <issuance>continuing</issuance> <publisher>American Geophysical Union (AGU)</publisher> </originInfo> <genre authority="marcgt">periodical</genre> <genre authority="bibutilsgt">academic journal</genre> </relatedItem> <abstract>Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 \pm 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).</abstract> <identifier type="citekey">McNicol-2023-Upscaling</identifier> <identifier type="doi">10.1029/2023av000956</identifier> <location> <url>https://gwf-uwaterloo.github.io/gwf-publications/G23-52001</url> </location> <part> <date>2023</date> <detail type="volume"><number>4</number></detail> <detail type="issue"><number>5</number></detail> </part> </mods> </modsCollection>
%0 Journal Article %T Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison %A McNicol, Gavin %A Fluet‐Chouinard, Etienne %A Ouyang, Zutao %A Knox, Sara %A Zhang, Zhen %A Aalto, Tuula %A Bansal, Sheel %A Chang, Kuang‐Yu %A Chen, Min %A Delwiche, Kyle %A Féron, Sarah %A Goeckede, Mathias %A Liu, Jinxun %A Malhotra, Avni %A Melton, Joe R. %A Riley, W. J. %A Vargas, Rodrigo %A Yuan, Kunxiaojia %A Ying, Qing %A Zhu, Qing %A Alekseychik, Pavel %A Aurela, Mika %A Billesbach, David P. %A Campbell, David I. %A Chen, Jiquan %A Chu, Housen %A Desai, Ankur R. %A Euskirchen, E. S. %A Goodrich, Jordan P. %A Griffis, Timothy J. %A Helbig, Manuel %A Hirano, Takashi %A Iwata, Hiroki %A Jurasinski, Gerald %A King, John S. %A Koebsch, Franziska %A Kolka, Randall K. %A Krauss, Ken W. %A Lohila, Annalea %A Mammarella, Ivan %A Nilson, Mats E. %A Noormets, Asko %A Oechel, Walter C. %A Peichl, Matthias %A Sachs, Torsten %A Sakabe, Ayaka %A Schulze, Christopher %A Sonnentag, Oliver %A Sullivan, Ryan C. %A Tuittila, Eeva‐Stiina %A Ueyama, Masahito %A Vesala, Timo %A Ward, Eric J. %A Wille, Christian %A Wong, Guan Xhuan %A Zona, Donatella %A Windham‐Myers, L. %A Poulter, Benjamin %A Jackson, Robert B. %J AGU Advances, Volume 4, Issue 5 %D 2023 %V 4 %N 5 %I American Geophysical Union (AGU) %F McNicol-2023-Upscaling %X Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 \pm 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ). %R 10.1029/2023av000956 %U https://gwf-uwaterloo.github.io/gwf-publications/G23-52001 %U https://doi.org/10.1029/2023av000956
Markdown (Informal)
[Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison](https://gwf-uwaterloo.github.io/gwf-publications/G23-52001) (McNicol et al., GWF 2023)
- Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison (McNicol et al., GWF 2023)
ACL
- Gavin McNicol, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Zhen Zhang, Tuula Aalto, Sheel Bansal, Kuang‐Yu Chang, Min Chen, Kyle Delwiche, Sarah Féron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, W. J. Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Ying, et al.. 2023. Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison. AGU Advances, Volume 4, Issue 5, 4(5).