@article{Ueyama-2023-Modeled,
title = "Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions",
author = {Ueyama, Masahito and
Knox, Sara and
Delwiche, Kyle and
Bansal, Sheel and
Riley, W. J. and
Baldocchi, Dennis and
Hirano, Takashi and
McNicol, Gavin and
Sch{\"a}fer, K. V. and
Windham‐Myers, L. and
Poulter, Benjamin and
Jackson, Robert B. and
Chang, Kuang‐Yu and
Chen, Jiquen and
Chu, Housen and
Desai, Ankur R. and
Gogo, S{\'e}bastien and
Iwata, Hiroki and
Kang, Minseok and
Mammarella, Ivan and
Peichl, Matthias and
Sonnentag, Oliver and
Tuittila, Eeva‐Stiina and
Ryu, Youngryel and
Euskirchen, E. S. and
G{\"o}ckede, Mathias and
Jacotot, Adrien and
Nilsson, Mats B. and
Sachs, Torsten and
Ueyama, Masahito and
Knox, Sara and
Delwiche, Kyle and
Bansal, Sheel and
Riley, W. J. and
Baldocchi, Dennis and
Hirano, Takashi and
McNicol, Gavin and
Sch{\"a}fer, K. V. and
Windham‐Myers, L. and
Poulter, Benjamin and
Jackson, Robert B. and
Chang, Kuang‐Yu and
Chen, Jiquen and
Chu, Housen and
Desai, Ankur R. and
Gogo, S{\'e}bastien and
Iwata, Hiroki and
Kang, Minseok and
Mammarella, Ivan and
Peichl, Matthias and
Sonnentag, Oliver and
Tuittila, Eeva‐Stiina and
Ryu, Youngryel and
Euskirchen, E. S. and
G{\"o}ckede, Mathias and
Jacotot, Adrien and
Nilsson, Mats B. and
Sachs, Torsten},
journal = "Global Change Biology, Volume 29, Issue 8",
volume = "29",
number = "8",
year = "2023",
publisher = "Wiley",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G23-79001",
doi = "10.1111/gcb.16594",
pages = "2313--2334",
abstract = "Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of {\mbox{$\geq$}}20{\%} of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI ({\textless}20{\%}) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 {\mbox{$\pm$}} 2 days) and long in bog sites (13 {\mbox{$\pm$}} 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77{\%} of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Ueyama-2023-Modeled">
<titleInfo>
<title>Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masahito</namePart>
<namePart type="family">Ueyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Knox</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Delwiche</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheel</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Riley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="family">Baldocchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Hirano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gavin</namePart>
<namePart type="family">McNicol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Schäfer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Windham‐Myers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Poulter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Jackson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuang‐Yu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiquen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Housen</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ankur</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Desai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sébastien</namePart>
<namePart type="family">Gogo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Iwata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minseok</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Mammarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Peichl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Sonnentag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eeva‐Stiina</namePart>
<namePart type="family">Tuittila</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youngryel</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Euskirchen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Göckede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrien</namePart>
<namePart type="family">Jacotot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mats</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Nilsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Sachs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology, Volume 29, Issue 8</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>Wiley</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of \geq20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (\textless20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 \pm 2 days) and long in bog sites (13 \pm 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.</abstract>
<identifier type="citekey">Ueyama-2023-Modeled</identifier>
<identifier type="doi">10.1111/gcb.16594</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G23-79001</url>
</location>
<part>
<date>2023</date>
<detail type="volume"><number>29</number></detail>
<detail type="issue"><number>8</number></detail>
<extent unit="page">
<start>2313</start>
<end>2334</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions
%A Ueyama, Masahito
%A Knox, Sara
%A Delwiche, Kyle
%A Bansal, Sheel
%A Riley, W. J.
%A Baldocchi, Dennis
%A Hirano, Takashi
%A McNicol, Gavin
%A Schäfer, K. V.
%A Windham‐Myers, L.
%A Poulter, Benjamin
%A Jackson, Robert B.
%A Chang, Kuang‐Yu
%A Chen, Jiquen
%A Chu, Housen
%A Desai, Ankur R.
%A Gogo, Sébastien
%A Iwata, Hiroki
%A Kang, Minseok
%A Mammarella, Ivan
%A Peichl, Matthias
%A Sonnentag, Oliver
%A Tuittila, Eeva‐Stiina
%A Ryu, Youngryel
%A Euskirchen, E. S.
%A Göckede, Mathias
%A Jacotot, Adrien
%A Nilsson, Mats B.
%A Sachs, Torsten
%J Global Change Biology, Volume 29, Issue 8
%D 2023
%V 29
%N 8
%I Wiley
%F Ueyama-2023-Modeled
%X Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of \geq20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (\textless20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 \pm 2 days) and long in bog sites (13 \pm 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.
%R 10.1111/gcb.16594
%U https://gwf-uwaterloo.github.io/gwf-publications/G23-79001
%U https://doi.org/10.1111/gcb.16594
%P 2313-2334
Markdown (Informal)
[Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions](https://gwf-uwaterloo.github.io/gwf-publications/G23-79001) (Ueyama et al., GWF 2023)
ACL
- Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, et al.. 2023. Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions. Global Change Biology, Volume 29, Issue 8, 29(8):2313–2334.