A. Royer


DOI bib
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche, Alexandre Langlois, Nick Rutter, A. Royer, J. M. King, Branden Walker, Philip Marsh, Evan J. Wilcox
The Cryosphere, Volume 16, Issue 1

Abstract. Topography and vegetation play a major role in sub-pixel variability of Arctic snowpack properties but are not considered in current passive microwave (PMW) satellite SWE retrievals. Simulation of sub-pixel variability of snow properties is also problematic when downscaling snow and climate models. In this study, we simplified observed variability of snowpack properties (depth, density, microstructure) in a two-layer model with mean values and distributions of two multi-year tundra dataset so they could be incorporated in SWE retrieval schemes. Spatial variation of snow depth was parameterized by a log-normal distribution with mean (μsd) values and coefficients of variation (CVsd). Snow depth variability (CVsd) was found to increase as a function of the area measured by a remotely piloted aircraft system (RPAS). Distributions of snow specific surface area (SSA) and density were found for the wind slab (WS) and depth hoar (DH) layers. The mean depth hoar fraction (DHF) was found to be higher in Trail Valley Creek (TVC) than in Cambridge Bay (CB), where TVC is at a lower latitude with a subarctic shrub tundra compared to CB, which is a graminoid tundra. DHFs were fitted with a Gaussian process and predicted from snow depth. Simulations of brightness temperatures using the Snow Microwave Radiative Transfer (SMRT) model incorporating snow depth and DHF variation were evaluated with measurements from the Special Sensor Microwave/Imager and Sounder (SSMIS) sensor. Variation in snow depth (CVsd) is proposed as an effective parameter to account for sub-pixel variability in PMW emission, improving simulation by 8 K. SMRT simulations using a CVsd of 0.9 best matched CVsd observations from spatial datasets for areas > 3 km2, which is comparable to the 3.125 km pixel size of the Equal-Area Scalable Earth (EASE)-Grid 2.0 enhanced resolution at 37 GHz.


DOI bib
Soil dielectric characterization during freeze–thaw transitions using L-band coaxial and soil moisture probes
Alex Mavrovic, Renato Pardo Lara, Aaron Berg, François Demontoux, A. Royer, Alexandre Roy
Hydrology and Earth System Sciences, Volume 25, Issue 3

Abstract. Soil microwave permittivity is a crucial parameter in passive microwave retrieval algorithms but remains a challenging variable to measure. To validate and improve satellite microwave data products, precise and reliable estimations of the relative permittivity (εr=ε/ε0=ε′-jε′′; unitless) of soils are required, particularly for frozen soils. In this study, permittivity measurements were acquired using two different instruments: the newly designed open-ended coaxial probe (OECP) and the conventional Stevens HydraProbe. Both instruments were used to characterize the permittivity of soil samples undergoing several freeze–thaw cycles in a laboratory environment. The measurements were compared to soil permittivity models. The OECP measured frozen (εfrozen′=[3.5; 6.0], εfrozen′′=[0.46; 1.2]) and thawed (εthawed′=[6.5; 22.8], εthawed′′=[1.43; 5.7]) soil microwave permittivity. We also demonstrate that cheaper and widespread soil permittivity probes operating at lower frequencies (i.e., Stevens HydraProbe) can be used to estimate microwave permittivity given proper calibration relative to an L-band (1–2 GHz) probe. This study also highlighted the need to improve dielectric soil models, particularly during freeze–thaw transitions. There are still important discrepancies between in situ and modeled estimates and no current model accounts for the hysteresis effect shown between freezing and thawing processes, which could have a significant impact on freeze–thaw detection from satellites.


DOI bib
L-Band response to freeze/thaw in a boreal forest stand from ground- and tower-based radiometer observations
Alexandre Roy, Peter Toose, Alex Mavrovic, Christoforos Pappas, A. Royer, Chris Derksen, Aaron Berg, Tracy Rowlandson, Mariam El-Amine, Alan G. Barr, Andrew Black, Alexandre Langlois, Oliver Sonnentag
Remote Sensing of Environment, Volume 237

Abstract The extent, timing and duration of seasonal freeze/thaw (FT) state exerts dominant control on boreal forest carbon, water and energy cycle processes. Recent and on-going L-Band (≈1.4 GHz) spaceborne missions have the potential to provide enhanced information on FT state over large geographic regions with rapid revisit time. However, the low spatial resolution of these spaceborne observations (≈45 km) makes it difficult to isolate the primary contributions (soil, vegetation, snow) to the FT signal in boreal forest. To better quantify these controls, two L-Band radiometers were deployed (September 2016 to July 2017) at a black spruce (Picea mariana) dominated boreal forest site; one unit above and one unit on the ground surface below the canopy to disentangle the microwave contributions of overstory canopy, and the ground surface on the FT brightness temperature (TB) signal. Bi-weekly multi-angular measurements from both units were combined in order to estimate effective scattering albedo (ω) and the microwave vegetative optical depth (τ), using the τ-ω microwave vegetation radiative transfer model. Soil moisture probes were inserted in the trunk of two black spruce and one larch (Larix laricina) trunks located in the footprint of the above-canopy radiometer to measure tree trunk relative dielectric constant (RDCtree). Results showed a strong relationship between RDCtree and tree skin temperature (Ttree) under freezing temperature conditions, which led to a gradual decrease of τ in winter. During the spring thawing period in April and May, τ remained relatively stable. In contrast, it increased substantially in June, most likely in relation to the growing season onset. Overall, τ was related to the seasonal RDCtree cycle (r = 0.76). Regarding ω, a value of 0.086 (±0.029) was obtained, but no dependency on Ttree or RDCtree was observed. Despite the observed impact of FT on vegetation L-Band signals, results from continuous TB observations spanning from 14 September 2016 to 25 May 2017, indicated that the main contribution to the observed L-Band TB freeze-up signal in the fall originated from the ground surface. The above-canopy unit showed some sensitivity to overstory canopy FT, yet the sensitivity was lower compared to the signal induced by the ground FT. In April and May, L-Band radiometer FT retrieval agreed closely to the melt onset detection using RDCtree but it was likely related to the coincident presence of liquid water in the snow. Our findings have important applications to L-Band spaceborne FT algorithm development and validation across the boreal forest. More specifically, our findings allow better quantification of the potential effect of frozen ground on various biogeophysical and biogeochemical processes in boreal forests.


DOI bib
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Nick Rutter, Melody Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, A. Royer, Philip Marsh, C. F. Larsen, Matthew Sturm
The Cryosphere, Volume 13, Issue 11

Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across nine trenches) collected over two winters at Trail Valley Creek, NWT, Canada, was applied in synthetic radiative transfer experiments. This allowed for robust assessment of the impact of estimation accuracy of unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability in total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were less than a metre for all layers. Depth hoar was consistently ∼30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks <0.6 m, depth hoar SSA estimates of ±5 %–10 % around the optimal retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ∼30 cm, accurate values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA was applied.


DOI bib
Validation of the SMAP freeze/thaw product using categorical triple collocation
Haobo Lyu, Kaighin A. McColl, Xinlu Li, Chris Derksen, Aaron Berg, T. A. Black, Eugénie Euskirchen, M. M. Loranty, Jouni Pulliainen, Kimmo Rautiainen, Tracy Rowlandson, Alexandre Roy, A. Royer, Alexandre Langlois, Jilmarie Stephens, Hui Lu, Dara Entekhabi
Remote Sensing of Environment, Volume 205

Abstract The landscape freeze/thaw (FT) state plays an important role in local, regional and global weather and climate, but is difficult to monitor. The Soil Moisture Active Passive (SMAP) satellite mission provides hemispheric estimates of landscape FT state at a spatial resolution of approximately 36 2  km 2 . Previous validation studies of SMAP and other satellite FT products have compared satellite retrievals with point estimates obtained from in-situ measurements of air and/or soil temperature. Differences between the two are attributed to errors in the satellite retrieval. However, significant differences can occur between satellite and in-situ estimates solely due to differences in scale between the measurements; these differences can be viewed as ‘representativeness errors’ in the in-situ product, caused by using a point estimate to represent a large-scale spatial average. Most previous validation studies of landscape FT state have neglected representativeness errors entirely, resulting in conservative estimates of satellite retrieval skill. In this study, we use a variant of triple collocation called ‘categorical triple collocation’ – a technique that uses model, satellite and in-situ estimates to obtain relative performance rankings of all three products, without neglecting representativeness errors – to validate the SMAP landscape FT product. Performance rankings are obtained for nine sites at northern latitudes. We also investigate differences between using air or soil temperatures to estimate FT state, and between using morning (6 AM) or evening (6 PM) estimates. Overall, at most sites, the SMAP product or in-situ FT measurement is ranked first, and the model FT product is ranked last (although rankings vary across sites). These results suggest SMAP is adding value to model simulations, providing higher-accuracy estimates of landscape FT states compared to models and, in some cases, even in-situ estimates, when representativeness errors are properly accounted for in the validation analysis.

DOI bib
Dielectric characterization of vegetation at L band using an open-ended coaxial probe
Alex Mavrovic, Alexandre Roy, A. Royer, Bilal Filali, F.R. Boone, Christoforos Pappas, Oliver Sonnentag
Geoscientific Instrumentation, Methods and Data Systems, Volume 7, Issue 3

Abstract. Decoupling the integrated microwave signal originating from soil and vegetation remains a challenge for all microwave remote sensing applications. To improve satellite and airborne microwave data products in forest environments, a precise and reliable estimation of the relative permittivity (ε=ε′-iε′′) of trees is required. We developed an open-ended coaxial probe suitable for in situ permittivity measurements of tree trunks at L-band frequencies (1–2 GHz). The probe is characterized by uncertainty ratios under 3.3 % for a broad range of relative permittivities (unitless), [2–40] for ε′ and [0.1–20] for ε′′. We quantified the complex number describing the permittivity of seven different tree species in both frozen and thawed states: black spruce, larch, red spruce, balsam fir, red pine, aspen and black cherry. Permittivity variability is substantial and can range up to 300 % for certain species. Our results show that the permittivity of wood is linked to the freeze–thaw state of vegetation and that even short winter thaw events can lead to an increase in vegetation permittivity. The open-ended coaxial probe proved to be precise enough to capture the diurnal cycle of water storage inside the trunk for the length of the growing season.