Adam Green


DOI bib
Assessment of Different Water Use Efficiency Calculations for Dominant Forage Crops in the Great Lakes Basin
Kevin De Haan, Myroslava Khomik, Adam Green, Warren Helgason, Merrin L. Macrae, Mazda Kompani-Zare, Richard M. Petrone
Agriculture, Volume 11, Issue 8

Water use efficiency (WUE) can be calculated using a range of methods differing in carbon uptake and water use variable selection. Consequently, inconsistencies arise between WUE calculations due to complex physical and physiological interactions. The purpose of this study was to quantify and compare WUE estimates (harvest or flux-based) for alfalfa (C3 plant) and maize (C4 plant) and determine effects of input variables, plant physiology and farming practices on estimates. Four WUE calculations were investigated: two “harvest-based” methods, using above ground carbon content and either precipitation or evapotranspiration (ET), and two “flux-based” methods, using gross primary productivity (GPP) and either ET or transpiration. WUE estimates differed based on method used at both half-hourly and seasonal scales. Input variables used in calculations affected WUE estimates, and plant physiology led to different responses in carbon assimilation and water use variables. WUE estimates were also impacted by different plant physiological responses and processing methods, even when the same carbon assimilation and water use variables were considered. This study highlights a need to develop a metric of measuring cropland carbon-water coupling that accounts for all water use components, plant carbon responses, and biomass production.

DOI bib
The Impact of Variable Horizon Shade on the Growing Season Energy Budget of a Subalpine Headwater Wetland
Dylan M. Hrach, Richard M. Petrone, Brandon Van Huizen, Adam Green, Myroslava Khomik
Atmosphere, Volume 12, Issue 11

Surface energy budgets are important to the ecohydrology of complex terrain, where land surfaces cycle in and out of shadows creating distinct microclimates. Shading in such environments can help regulate downstream flow over the course of a growing season, but our knowledge on how shadows impact the energy budget and consequently ecohydrology in montane ecosystems is very limited. We investigated the influence of horizon shade on the surface energy fluxes of a subalpine headwater wetland in the Canadian Rocky Mountains during the growing season. During the study, surface insolation decreased by 60% (32% due to evolving horizon shade and 28% from seasonality). The influence of shade on the energy budget varied between two distinct periods: (1) Stable Shade, when horizon shade was constant and reduced sunlight by 2 h per day; and (2) Dynamic Shade, when shade increased and reduced sunlight by 0.18 h more each day, equivalent to a 13% reduction in incoming shortwave radiation and 16% in net radiation. Latent heat flux, the dominant energy flux at our site, varied temporally because of changes in incoming radiation, atmospheric demand, soil moisture and shade. Horizon shade controlled soil moisture at our site by prolonging snowmelt and reducing evapotranspiration in the late growing season, resulting in increased water storage capacity compared to other mountain wetlands. With the mounting risk of climate-change-driven severe spring flooding and late season droughts downstream of mountain headwaters, shaded subalpine wetlands provide important ecohydrological and mitigation services that are worthy of further study and mapping. This will help us better understand and protect mountain and prairie water resources.