Ala Bahrami


2022

DOI bib
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, A. M. Ireson, Saman Razavi, Karl–Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami
Hydrological Processes, Volume 36, Issue 4

Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper discusses the scientific and technical challenges of the large-scale modelling of cold region systems and reports recent modelling developments, focussing on MESH, the Canadian community hydrological land surface scheme. New cold region process representations include improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole pond storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multistage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km2). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. These illustrate the current capabilities and limitations of cold region modelling, and the extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.

2021

DOI bib
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater, John W. Pomeroy, Alain Pietroniro, Bruce Davison, Mohamed Elshamy, Fuad Yassin, Prabin Rokaya, Abbas Fayad, Zelalem Tesemma, Daniel Princz, Youssef Loukili, C. M. DeBeer, Andrew Ireson, Saman Razavi, Karl–Erich Lindenschmidt, Amin Elshorbagy, Matthew K. MacDonald, Mohamed S. Abdelhamed, Amin Haghnegahdar, Ala Bahrami

Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.

DOI bib
Data assimilation of satellite-based terrestrial water storage changes into a hydrology land-surface model
Ala Bahrami, Kalifa Goı̈ta, Ramata Magagi, Bruce Davison, Saman Razavi, Mohamed Elshamy, Daniel Princz
Journal of Hydrology, Volume 597

• Development of the ensemble-based data assimilation framework is examined. • GRACE assimilation improves the simulation of snow estimates at the basin and grid scales. • Data assimilation can effectively constrain the amplitude of modeled water storage dynamics. • GRACE data assimilation improves the simulation of high flows during snowmelt season. Accurate estimation of snow mass or snow water equivalent (SWE) over space and time is required for global and regional predictions of the effects of climate change. This work investigates whether integration of remotely sensed terrestrial water storage (TWS) information, which is derived from the Gravity Recovery and Climate Experiment (GRACE), can improve SWE and streamflow simulations within a semi-distributed hydrology land surface model. A data assimilation (DA) framework was developed to combine TWS observations with the MESH (Modélisation Environnementale Communautaire – Surface Hydrology) model using an ensemble Kalman smoother (EnKS). The snow-dominated Liard Basin was selected as a case study. The proposed assimilation methodology reduced bias of monthly SWE simulations at the basin scale by 17.5% and improved unbiased root-mean-square difference (ubRMSD) by 23%. At the grid scale, the DA method improved ubRMSD values and correlation coefficients for 85% and 97% of the grid cells, respectively. Effects of GRACE DA on streamflow simulations were evaluated against observations from three river gauges, where it effectively improved the simulation of high flows during snowmelt season from April to June. The influence of GRACE DA on the total flow volume and low flows was found to be variable. In general, the use of GRACE observations in the assimilation framework not only improved the simulation of SWE, but also effectively influenced streamflow simulations.