2023
DOI
bib
abs
Towards a coherent flood forecasting framework for Canada: Local to global implications
Louise Arnal,
Alain Pietroniro,
John W. Pomeroy,
Vincent Fortin,
David R. Casson,
Tricia A. Stadnyk,
Prabin Rokaya,
Dorothy Durnford,
Evan Friesenhan,
Martyn Clark,
Louise Arnal,
Alain Pietroniro,
John W. Pomeroy,
Vincent Fortin,
David R. Casson,
Tricia A. Stadnyk,
Prabin Rokaya,
Dorothy Durnford,
Evan Friesenhan,
Martyn Clark
Journal of Flood Risk Management
Abstract Operational flood forecasting in Canada is a provincial responsibility that is carried out by several entities across the country. However, the increasing costs and impacts of floods require better and nationally coordinated flood prediction systems. A more coherent flood forecasting framework for Canada can enable implementing advanced prediction capabilities across the different entities with responsibility for flood forecasting. Recently, the Canadian meteorological and hydrological services were tasked to develop a national flow guidance system. Alongside this initiative, the Global Water Futures program has been advancing cold regions process understanding, hydrological modeling, and forecasting. A community of practice was established for industry, academia, and decision‐makers to share viewpoints on hydrological challenges. Taken together, these initiatives are paving the way towards a national flood forecasting framework. In this article, forecasting challenges are identified (with a focus on cold regions), and recommendations are made to promote the creation of this framework. These include the need for cooperation, well‐defined governance, and better knowledge mobilization. Opportunities and challenges posed by the increasing data availability globally are also highlighted. Advances in each of these areas are positioning Canada as a major contributor to the international operational flood forecasting landscape. This article highlights a route towards the deployment of capacities across large geographical domains.
DOI
bib
abs
Towards a coherent flood forecasting framework for Canada: Local to global implications
Louise Arnal,
Alain Pietroniro,
John W. Pomeroy,
Vincent Fortin,
David R. Casson,
Tricia A. Stadnyk,
Prabin Rokaya,
Dorothy Durnford,
Evan Friesenhan,
Martyn Clark,
Louise Arnal,
Alain Pietroniro,
John W. Pomeroy,
Vincent Fortin,
David R. Casson,
Tricia A. Stadnyk,
Prabin Rokaya,
Dorothy Durnford,
Evan Friesenhan,
Martyn Clark
Journal of Flood Risk Management
Abstract Operational flood forecasting in Canada is a provincial responsibility that is carried out by several entities across the country. However, the increasing costs and impacts of floods require better and nationally coordinated flood prediction systems. A more coherent flood forecasting framework for Canada can enable implementing advanced prediction capabilities across the different entities with responsibility for flood forecasting. Recently, the Canadian meteorological and hydrological services were tasked to develop a national flow guidance system. Alongside this initiative, the Global Water Futures program has been advancing cold regions process understanding, hydrological modeling, and forecasting. A community of practice was established for industry, academia, and decision‐makers to share viewpoints on hydrological challenges. Taken together, these initiatives are paving the way towards a national flood forecasting framework. In this article, forecasting challenges are identified (with a focus on cold regions), and recommendations are made to promote the creation of this framework. These include the need for cooperation, well‐defined governance, and better knowledge mobilization. Opportunities and challenges posed by the increasing data availability globally are also highlighted. Advances in each of these areas are positioning Canada as a major contributor to the international operational flood forecasting landscape. This article highlights a route towards the deployment of capacities across large geographical domains.
DOI
bib
abs
Learning from hydrological models’ challenges: A case study from the Nelson basin model intercomparison project
Mohamed Ismaiel Ahmed,
Tricia A. Stadnyk,
Alain Pietroniro,
Hervé Awoye,
A. R. Bajracharya,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
James R. Craig,
Mark Gervais,
Kevin Sagan,
Shane Wruth,
Kristina Koenig,
Rajtantra Lilhare,
Stephen J. Déry,
Scott Pokorny,
H.D. Venema,
Ameer Muhammad,
Mahkameh Taheri,
Mohamed Ismaiel Ahmed,
Tricia A. Stadnyk,
Alain Pietroniro,
Hervé Awoye,
A. R. Bajracharya,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
James R. Craig,
Mark Gervais,
Kevin Sagan,
Shane Wruth,
Kristina Koenig,
Rajtantra Lilhare,
Stephen J. Déry,
Scott Pokorny,
H.D. Venema,
Ameer Muhammad,
Mahkameh Taheri
Journal of Hydrology, Volume 623
Intercomparison studies play an important, but limited role in understanding the usefulness and limitations of currently available hydrological models. Comparison studies are often limited to well-behaved hydrological regimes, where rainfall-runoff processes dominate the hydrological response. These efforts have not covered western Canada due to the difficulty in simulating that region’s complex cold region hydrology with varying spatiotemporal contributing areas. This intercomparison study is the first of a series of studies under the intercomparison project of the international and interprovincial transboundary Nelson-Churchill River Basin (NCRB) in North America (Nelson-MIP), which encompasses different ecozones with major areas of the non-contributing Prairie potholes, forests, glaciers, mountains, and permafrost. The performance of eight hydrological and land surface models is compared at different unregulated watersheds within the NCRB. This is done to assess the models’ streamflow performance and overall fidelity without and with calibration, to capture the underlying physics of the region and to better understand why models struggle to accurately simulate its hydrology. Results show that some of the participating models have difficulties in simulating streamflow and/or internal hydrological variables (e.g., evapotranspiration) over Prairie watersheds but most models performed well elsewhere. This stems from model structural deficiencies, despite the various models being well calibrated to observed streamflow. Some model structural changes are identified for the participating models for future improvement. The outcomes of this study offer guidance for practitioners for the accurate prediction of NCRB streamflow, and for increasing confidence in future projections of water resources supply and management.
DOI
bib
abs
Learning from hydrological models’ challenges: A case study from the Nelson basin model intercomparison project
Mohamed Ismaiel Ahmed,
Tricia A. Stadnyk,
Alain Pietroniro,
Hervé Awoye,
A. R. Bajracharya,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
James R. Craig,
Mark Gervais,
Kevin Sagan,
Shane Wruth,
Kristina Koenig,
Rajtantra Lilhare,
Stephen J. Déry,
Scott Pokorny,
H.D. Venema,
Ameer Muhammad,
Mahkameh Taheri,
Mohamed Ismaiel Ahmed,
Tricia A. Stadnyk,
Alain Pietroniro,
Hervé Awoye,
A. R. Bajracharya,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
James R. Craig,
Mark Gervais,
Kevin Sagan,
Shane Wruth,
Kristina Koenig,
Rajtantra Lilhare,
Stephen J. Déry,
Scott Pokorny,
H.D. Venema,
Ameer Muhammad,
Mahkameh Taheri
Journal of Hydrology, Volume 623
Intercomparison studies play an important, but limited role in understanding the usefulness and limitations of currently available hydrological models. Comparison studies are often limited to well-behaved hydrological regimes, where rainfall-runoff processes dominate the hydrological response. These efforts have not covered western Canada due to the difficulty in simulating that region’s complex cold region hydrology with varying spatiotemporal contributing areas. This intercomparison study is the first of a series of studies under the intercomparison project of the international and interprovincial transboundary Nelson-Churchill River Basin (NCRB) in North America (Nelson-MIP), which encompasses different ecozones with major areas of the non-contributing Prairie potholes, forests, glaciers, mountains, and permafrost. The performance of eight hydrological and land surface models is compared at different unregulated watersheds within the NCRB. This is done to assess the models’ streamflow performance and overall fidelity without and with calibration, to capture the underlying physics of the region and to better understand why models struggle to accurately simulate its hydrology. Results show that some of the participating models have difficulties in simulating streamflow and/or internal hydrological variables (e.g., evapotranspiration) over Prairie watersheds but most models performed well elsewhere. This stems from model structural deficiencies, despite the various models being well calibrated to observed streamflow. Some model structural changes are identified for the participating models for future improvement. The outcomes of this study offer guidance for practitioners for the accurate prediction of NCRB streamflow, and for increasing confidence in future projections of water resources supply and management.
The North American prairie region is known for its poorly defined drainage system with numerous surface depressions that lead to variable contributing areas for streamflow generation. Current approaches of representing surface depressions are either simplistic or computationally demanding. In this study, a variable contributing area algorithm is implemented in the HYdrological Predictions for the Environment (HYPE) model and evaluated in the Canadian prairies. HYPE's local lake module is replaced with a Hysteretic Depressional Storage (HDS) algorithm to estimate the variable contributing fractions of subbasins. The modified model shows significant improvements in simulating the streamflows of two prairie basins in Saskatchewan, Canada. The modified model can replicate the hysteretic relationships between the water volume and contributing area of the basins. With the inclusion of the HDS algorithm in HYPE, the global HYPE modelling community can now simulate an important hydrological phenomenon, previously unavailable in the model.
2022
• The probable impacts of future climate on ice-jam floods are discussed. • Practical suggestions for modelling ice-jam floods under both past and future climates are provided. • Research opportunities that could lead to further improvements in ice-jam flood modelling and prediction are presented. Ice-jam floods (IJFs) are a key concern in cold-region environments, where seasonal effects of river ice formation and break-up can have substantial impacts on flooding processes. Different statistical, machine learning, and process-based models have been developed to simulate IJF events in order to improve our understanding of river ice processes, to quantify potential flood magnitudes and backwater levels, and to undertake risk analysis under a changing climate. Assessment of IJF risks under future climate is limited due to constraints related to model input data. However, given the broad economic and environmental significance of IJFs and their sensitivity to a changing climate, robust modelling frameworks that can incorporate future climatic changes, and produce reliable scenarios of future IJF risks are needed. In this review paper, we discuss the probable impacts of future climate on IJFs and provide suggestions on modelling IJFs under both past and future climates. We also make recommendations around existing approaches and highlight some data and research opportunities, that could lead to further improvements in IJF modelling and prediction.
DOI
bib
abs
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire—Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami
Hydrological Processes, Volume 36, Issue 4
Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper discusses the scientific and technical challenges of the large-scale modelling of cold region systems and reports recent modelling developments, focussing on MESH, the Canadian community hydrological land surface scheme. New cold region process representations include improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole pond storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multistage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km2). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. These illustrate the current capabilities and limitations of cold region modelling, and the extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.
DOI
bib
abs
Community Workflows to Advance Reproducibility in Hydrologic Modeling: Separating Model‐Agnostic and Model‐Specific Configuration Steps in Applications of Large‐Domain Hydrologic Models
Wouter Knoben,
Martyn Clark,
Jerad Bales,
Andrew Bennett,
Shervan Gharari,
Christopher B. Marsh,
Bart Nijssen,
Alain Pietroniro,
Raymond J. Spiteri,
Guoqiang Tang,
David G. Tarboton,
Andrew W. Wood
Water Resources Research, Volume 58, Issue 11
Despite the proliferation of computer-based research on hydrology and water resources, such research is typically poorly reproducible. Published studies have low reproducibility due to incomplete availability of data and computer code, and a lack of documentation of workflow processes. This leads to a lack of transparency and efficiency because existing code can neither be quality controlled nor reused. Given the commonalities between existing process-based hydrologic models in terms of their required input data and preprocessing steps, open sharing of code can lead to large efficiency gains for the modeling community. Here, we present a model configuration workflow that provides full reproducibility of the resulting model instantiations in a way that separates the model-agnostic preprocessing of specific data sets from the model-specific requirements that models impose on their input files. We use this workflow to create large-domain (global and continental) and local configurations of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model connected to the mizuRoute routing model. These examples show how a relatively complex model setup over a large domain can be organized in a reproducible and structured way that has the potential to accelerate advances in hydrologic modeling for the community as a whole. We provide a tentative blueprint of how community modeling initiatives can be built on top of workflows such as this. We term our workflow the “Community Workflows to Advance Reproducibility in Hydrologic Modeling” (CWARHM; pronounced “swarm”).
Abstract The Yukon River Basin (YRB) is one of the most important river networks shared between Canada and The United States, and is one of the largest river basins in the subarctic region of North America. The Canadian part of the YRB is characterized by steeply sloped, partly glaciated mountain headwaters that generate considerable runoff during melt of glaciers and seasonal snowcover. Snow redistribution, snowmelt, glacier melt and freezing–thawing soil processes in winter and spring along with summertime rainfall‐runoff and evapotranspiration processes are thus key components of streamflow generation in the basin, making conceptual rainfall‐runoff models unsuitable for this cold region. Due to the remote high latitudes and high altitudes of the basin, there is a paucity of observational data, making heavily calibrated conceptual modeling approaches infeasible. At the request of the Yukon Government, this project developed and operationalized a streamflow forecasting system for the Yukon River and several of its tributary rivers using a distributed land surface modeling approach developed for large‐scale implementation in cold regions. This represents a substantial advance in bringing operational hydrological forecasting to the Canadian subarctic for the first time. This experience will inform future research to operation improvements as Canada develops a nationally coordinated flood forecast system.
2021
DOI
bib
abs
The Maimai <scp>M8</scp> experimental catchment database: Forty years of process‐based research on steep, wet hillslopes
Jeffrey J. McDonnell,
Chris Gabrielli,
Ali Ameli,
Jagath Ekanayake,
Fabrizio Fenicia,
Jim Freer,
C. B. Graham,
B. L. McGlynn,
Uwe Morgenstern,
Alain Pietroniro,
Takahiro Sayama,
Jan Seibert,
M. K. Stewart,
Kellie B. Vaché,
Markus Weiler,
Ross Woods,
Jeffrey J. McDonnell,
Chris Gabrielli,
Ali Ameli,
Jagath Ekanayake,
Fabrizio Fenicia,
Jim Freer,
C. B. Graham,
B. L. McGlynn,
Uwe Morgenstern,
Alain Pietroniro,
Takahiro Sayama,
Jan Seibert,
M. K. Stewart,
Kellie B. Vaché,
Markus Weiler,
Ross Woods
Hydrological Processes, Volume 35, Issue 5
Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada School of Geosciences, University of Birmingham, Birmingham, UK Dept of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada Landcare Research, Lincoln, New Zealand Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada School of Geographical Sciences, University of Bristol, Bristol, UK Cabot Institute, University of Bristol, Bristol, UK Hetch Hetchy Power, San Francisco, California, USA Division of Earth and Ocean Sciences, Nicolas School of the Environment, Duke University, Durham, North Carolina, USA GNS Science, Lower Hutt, New Zealand Department of Civil Engineering, Univeristy of Calgary, Calgary, Alberta, Canada Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan Department of Geography, University of Zurich, Zurich, Switzerland Dept of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA Faculty of Environment & Natural Resources, University of Freiburg, Freiburg, Germany Faculty of Engineering, University of Bristol, Bristol, UK
DOI
bib
abs
The Maimai <scp>M8</scp> experimental catchment database: Forty years of process‐based research on steep, wet hillslopes
Jeffrey J. McDonnell,
Chris Gabrielli,
Ali Ameli,
Jagath Ekanayake,
Fabrizio Fenicia,
Jim Freer,
C. B. Graham,
B. L. McGlynn,
Uwe Morgenstern,
Alain Pietroniro,
Takahiro Sayama,
Jan Seibert,
M. K. Stewart,
Kellie B. Vaché,
Markus Weiler,
Ross Woods,
Jeffrey J. McDonnell,
Chris Gabrielli,
Ali Ameli,
Jagath Ekanayake,
Fabrizio Fenicia,
Jim Freer,
C. B. Graham,
B. L. McGlynn,
Uwe Morgenstern,
Alain Pietroniro,
Takahiro Sayama,
Jan Seibert,
M. K. Stewart,
Kellie B. Vaché,
Markus Weiler,
Ross Woods
Hydrological Processes, Volume 35, Issue 5
Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada School of Geosciences, University of Birmingham, Birmingham, UK Dept of Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada Landcare Research, Lincoln, New Zealand Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada School of Geographical Sciences, University of Bristol, Bristol, UK Cabot Institute, University of Bristol, Bristol, UK Hetch Hetchy Power, San Francisco, California, USA Division of Earth and Ocean Sciences, Nicolas School of the Environment, Duke University, Durham, North Carolina, USA GNS Science, Lower Hutt, New Zealand Department of Civil Engineering, Univeristy of Calgary, Calgary, Alberta, Canada Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan Department of Geography, University of Zurich, Zurich, Switzerland Dept of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA Faculty of Environment & Natural Resources, University of Freiburg, Freiburg, Germany Faculty of Engineering, University of Bristol, Bristol, UK
DOI
bib
abs
Great Lakes Runoff Intercomparison Project Phase 3: Lake Erie (GRIP-E)
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
Étienne Gaborit,
Vincent Fortin,
Nicolas Gasset,
Hervé Awoye,
Tricia A. Stadnyk,
Lauren M. Fry,
Emily A. Bradley,
Frank Seglenieks,
André Guy Tranquille Temgoua,
Daniel Princz,
Shervan Gharari,
Amin Haghnegahdar,
Mohamed Elshamy,
Saman Razavi,
Martin Gauch,
Jimmy Lin,
Xiaojing Ni,
Yongping Yuan,
Meghan McLeod,
N. B. Basu,
Rohini Kumar,
Oldřich Rakovec,
Luis Samaniego,
Sabine Attinger,
Narayan Kumar Shrestha,
Prasad Daggupati,
Tirthankar Roy,
Sungwook Wi,
Timothy Hunter,
James R. Craig,
Alain Pietroniro,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
Étienne Gaborit,
Vincent Fortin,
Nicolas Gasset,
Hervé Awoye,
Tricia A. Stadnyk,
Lauren M. Fry,
Emily A. Bradley,
Frank Seglenieks,
André Guy Tranquille Temgoua,
Daniel Princz,
Shervan Gharari,
Amin Haghnegahdar,
Mohamed Elshamy,
Saman Razavi,
Martin Gauch,
Jimmy Lin,
Xiaojing Ni,
Yongping Yuan,
Meghan McLeod,
N. B. Basu,
Rohini Kumar,
Oldřich Rakovec,
Luis Samaniego,
Sabine Attinger,
Narayan Kumar Shrestha,
Prasad Daggupati,
Tirthankar Roy,
Sungwook Wi,
Timothy Hunter,
James R. Craig,
Alain Pietroniro
Journal of Hydrologic Engineering, Volume 26, Issue 9
AbstractHydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequen...
DOI
bib
abs
Great Lakes Runoff Intercomparison Project Phase 3: Lake Erie (GRIP-E)
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
Étienne Gaborit,
Vincent Fortin,
Nicolas Gasset,
Hervé Awoye,
Tricia A. Stadnyk,
Lauren M. Fry,
Emily A. Bradley,
Frank Seglenieks,
André Guy Tranquille Temgoua,
Daniel Princz,
Shervan Gharari,
Amin Haghnegahdar,
Mohamed Elshamy,
Saman Razavi,
Martin Gauch,
Jimmy Lin,
Xiaojing Ni,
Yongping Yuan,
Meghan McLeod,
N. B. Basu,
Rohini Kumar,
Oldřich Rakovec,
Luis Samaniego,
Sabine Attinger,
Narayan Kumar Shrestha,
Prasad Daggupati,
Tirthankar Roy,
Sungwook Wi,
Timothy Hunter,
James R. Craig,
Alain Pietroniro,
Juliane Mai,
Bryan A. Tolson,
Hongren Shen,
Étienne Gaborit,
Vincent Fortin,
Nicolas Gasset,
Hervé Awoye,
Tricia A. Stadnyk,
Lauren M. Fry,
Emily A. Bradley,
Frank Seglenieks,
André Guy Tranquille Temgoua,
Daniel Princz,
Shervan Gharari,
Amin Haghnegahdar,
Mohamed Elshamy,
Saman Razavi,
Martin Gauch,
Jimmy Lin,
Xiaojing Ni,
Yongping Yuan,
Meghan McLeod,
N. B. Basu,
Rohini Kumar,
Oldřich Rakovec,
Luis Samaniego,
Sabine Attinger,
Narayan Kumar Shrestha,
Prasad Daggupati,
Tirthankar Roy,
Sungwook Wi,
Timothy Hunter,
James R. Craig,
Alain Pietroniro
Journal of Hydrologic Engineering, Volume 26, Issue 9
AbstractHydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequen...
DOI
bib
abs
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami,
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami
Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.
DOI
bib
abs
Advances in modelling large river basins in cold regions with Modélisation Environmentale Communautaire - Surface and Hydrology (MESH), the Canadian hydrological land surface scheme
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami,
H. S. Wheater,
John W. Pomeroy,
Alain Pietroniro,
Bruce Davison,
Mohamed Elshamy,
Fuad Yassin,
Prabin Rokaya,
Abbas Fayad,
Zelalem Tesemma,
Daniel Princz,
Youssef Loukili,
C. M. DeBeer,
Andrew Ireson,
Saman Razavi,
Karl‐Erich Lindenschmidt,
Amin Elshorbagy,
Matthew K. MacDonald,
Mohamed S. Abdelhamed,
Amin Haghnegahdar,
Ala Bahrami
Cold regions provide water resources for half the global population yet face rapid change. Their hydrology is dominated by snow, ice and frozen soils, and climate warming is having profound effects. Hydrological models have a key role in predicting changing water resources, but are challenged in cold regions. Ground-based data to quantify meteorological forcing and constrain model parameterization are limited, while hydrological processes are complex, often controlled by phase change energetics. River flows are impacted by poorly quantified human activities. This paper reports scientific developments over the past decade of MESH, the Canadian community hydrological land surface scheme. New cold region process representation includes improved blowing snow transport and sublimation, lateral land-surface flow, prairie pothole storage dynamics, frozen ground infiltration and thermodynamics, and improved glacier modelling. New algorithms to represent water management include multi-stage reservoir operation. Parameterization has been supported by field observations and remotely sensed data; new methods for parameter identification have been used to evaluate model uncertainty and support regionalization. Additionally, MESH has been linked to broader decision-support frameworks, including river ice simulation and hydrological forecasting. The paper also reports various applications to the Saskatchewan and Mackenzie River basins in western Canada (0.4 and 1.8 million km). These basins arise in glaciated mountain headwaters, are partly underlain by permafrost, and include remote and incompletely understood forested, wetland, agricultural and tundra ecoregions. This imposes extraordinary challenges to prediction, including the need to overcoming biases in forcing data sets, which can have disproportionate effects on the simulated hydrology.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro,
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro,
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
W. L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
Andrew Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
Michael N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
Oxygen-18 and deuterium were measured in streamflow samples collected from 331 gauging stations across Canada during 2013 to 2019. This dataset includes 9206 isotopic analyses made on 4603 individual water samples, and an additional 1259 analysis repeats for quality assurance/quality control. We also include arithmetic and flow-weighted averages, and other basic statistics for stations where adequate data were available. Station data are provided including station code, name, province, latitude, longitude and drainage area. Flow data were extracted from the historical database of the Water Survey of Canada. Details on the preliminary application of these data are provided in “ 18 O and 2 H in streamflow across Canada” [1] . Overall, these data are expected to be useful when combined with precipitation datasets and analytical or numerical models for water resource management and planning, including tracing streamflow source, water balance, evapotranspiration partitioning, residence time analysis, and early detection of climate and land use changes in Canada.
2020
Abstract. Land models are increasingly used in terrestrial hydrology due to their process-oriented representation of water and energy fluxes. Land models can be set up at a range of spatial configurations, often ranging from grid sizes of 0.02 to 2 degrees (approximately 2 to 200 km) and applied at sub-daily temporal resolutions for simulation of energy fluxes. A priori specification of the grid size of the land models typically is derived from forcing resolutions, modeling objectives, available geo-spatial data and computational resources. Typically, the choice of model configuration and grid size is based on modeling convenience and is rarely examined for adequate physical representation in the context of modeling. The variability of the inputs and parameters, forcings, soil types, and vegetation covers, are masked or aggregated based on the a priori chosen grid size. In this study, we propose an alternative to directly set up a land model based on the concept of Group Response Unit (GRU). Each GRU is a unique combination of land cover, soil type, and other desired geographical features that has hydrological significance, such as elevation zone, slope, and aspect. Computational units are defined as GRUs that are forced at a specific forcing resolution; therefore, each computational unit has a unique combination of specific geo-spatial data and forcings. We set up the Variable Infiltration Capacity (VIC) model, based on the GRU concept (VIC-GRU). Utilizing this model setup and its advantages we try to answer the following questions: (1) how well a model configuration simulates an output variable, such as streamflow, for range of computational units, (2) how well a model configuration with fewer computational units, coarser forcing resolution and less geo-spatial information, reproduces a model set up with more computational units, finer forcing resolution and more geo-spatial information, and finally (3) how uncertain the model structure and parameters are for the land model. Our results, although case dependent, show that the models may similarly reproduce output with a lower number of computational units in the context of modeling (streamflow for example). Our results also show that a model configuration with a lower number of computational units may reproduce the simulations from a model configuration with more computational units. Similarly, this can assist faster parameter identification and model diagnostic suites, such as sensitivity and uncertainty, on a less computationally expensive model setup. Finally, we encourage the land model community to adopt flexible approaches that will provide a better understanding of accuracy-performance tradeoff in land models.
Hydrologic-Land Surface Models (H-LSMs) have been progressively developed to a stage where they represent the dominant hydrological processes for a variety of hydrological regimes and include a range of water management practices, and are increasingly used to simulate water storages and fluxes of large basins under changing environmental conditions across the globe. However, efforts for comprehensive evaluation of the utility of H-LSMs in large, regulated watersheds have been limited. In this study, we evaluated the capability of a Canadian H-LSM, called MESH, in the highly regulated Saskatchewan River Basin (SaskRB), Canada, under the constraint of significant precipitation uncertainty. A comprehensive analysis of the MESH model performance was carried out in two steps. First, the reliability of multiple precipitation products was evaluated against climate station observations and based on their performance in simulating streamflow across the basin when forcing the MESH model with a default parameterization. Second, a state-of-the-art multi-criteria calibration approach was applied, using various observational information including streamflow, storage and fluxes for calibration and validation. The first analysis shows that the quality of precipitation products had a direct and immediate impact on simulation performance for the basin headwaters but effects were dampened when going downstream. The subsequent analyses show that the MESH model was able to capture observed responses of multiple fluxes and storage across the basin using a global multi-station calibration method. Despite poorer performance in some basins, the global parameterization generally achieved better model performance than a default model parameterization. Validation using storage anomaly and evapotranspiration generally showed strong correlation with observations, but revealed potential deficiencies in the simulation of storage anomaly over open water areas. Keywords: Precipitation Uncertainty, Hydrologic-Land Surface Models, multi-criteria calibration, storage and fluxes validation, Saskatchewan River Basin, Canada
Abstract. Cold region hydrology is very sensitive to the impacts of climate warming. Impacts of warming over recent decades in western Canada include glacier retreat, permafrost thaw, and changing patterns of precipitation, with an increased proportion of winter precipitation falling as rainfall and shorter durations of snow cover, as well as consequent changes in flow regimes. Future warming is expected to continue along these lines. Physically realistic and sophisticated hydrological models driven by reliable climate forcing can provide the capability to assess hydrological responses to climate change. However, the provision of reliable forcing data remains problematic, particularly in data-sparse regions. Hydrological processes in cold regions involve complex phase changes and so are very sensitive to small biases in the driving meteorology, particularly in temperature and precipitation, including precipitation phase. Cold regions often have sparse surface observations, particularly at high elevations that generate a large amount of runoff. This paper aims to provide an improved set of forcing data for large-scale hydrological models for climate change impact assessment. The best available gridded data in Canada are from the high-resolution forecasts of the Global Environmental Multiscale (GEM) atmospheric model and outputs of the Canadian Precipitation Analysis (CaPA), but these datasets have a short historical record. The EU WATCH ERA-Interim reanalysis (WFDEI) has a longer historical record but has often been found to be biased relative to observations over Canada. The aim of this study, therefore, is to blend the strengths of both datasets (GEM-CaPA and WFDEI) to produce a less-biased long-record product (WFDEI-GEM-CaPA) for hydrological modelling and climate change impact assessment over the Mackenzie River Basin. First, a multivariate generalization of the quantile mapping technique was implemented to bias-correct WFDEI against GEM-CaPA at 3 h ×0.125∘ resolution during the 2005–2016 overlap period, followed by a hindcast of WFDEI-GEM-CaPA from 1979. The derived WFDEI-GEM-CaPA data are validated against station observations as a preliminary step to assess their added value. This product is then used to bias-correct climate projections from the Canadian Centre for Climate Modelling and Analysis Canadian Regional Climate Model (CanRCM4) between 1950 and 2100 under RCP8.5, and an analysis of the datasets shows that the biases in the original WFDEI product have been removed and the climate change signals in CanRCM4 are preserved. The resulting bias-corrected datasets are a consistent set of historical and climate projection data suitable for large-scale modelling and future climate scenario analysis. The final historical product (WFDEI-GEM-CaPA, 1979–2016) is freely available at the Federated Research Data Repository at https://doi.org/10.20383/101.0111 (Asong et al., 2018), while the original and corrected CanRCM4 data are available at https://doi.org/10.20383/101.0162 (Asong et al., 2019).
Abstract. Permafrost is an important feature of cold-region hydrology, particularly in river basins such as the Mackenzie River basin (MRB), and it needs to be properly represented in hydrological and land surface models (H-LSMs) built into existing Earth system models (ESMs), especially under the unprecedented climate warming trends that have been observed. Higher rates of warming have been reported in high latitudes compared to the global average, resulting in permafrost thaw with wide-ranging implications for hydrology and feedbacks to climate. The current generation of H-LSMs is being improved to simulate permafrost dynamics by allowing deep soil profiles and incorporating organic soils explicitly. Deeper soil profiles have larger hydraulic and thermal memories that require more effort to initialize. This study aims to devise a robust, yet computationally efficient, initialization and parameterization approach applicable to regions where data are scarce and simulations typically require large computational resources. The study further demonstrates an upscaling approach to inform large-scale ESM simulations based on the insights gained by modelling at small scales. We used permafrost observations from three sites along the Mackenzie River valley spanning different permafrost classes to test the validity of the approach. Results show generally good performance in reproducing present-climate permafrost properties at the three sites. The results also emphasize the sensitivity of the simulations to the soil layering scheme used, the depth to bedrock, and the organic soil properties.
Funding and in-kind support for analytical costs and logistics was provided by Environment and Climate Change Canada via a Grants and Contributions Agreement and by InnoTech Alberta via an Internal Investment Grant.
DOI
bib
abs
Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation Products
L. H. Pitcher,
L. C. Smith,
Sarah Cooley,
Annie Zaino,
R. L. Carlson,
Joseph L. Pettit,
C. J. Gleason,
J. T. Minear,
Jessica V. Fayne,
M. J. Willis,
J. S. Hansen,
Kelly Easterday,
Merritt E. Harlan,
Theodore Langhorst,
Simon N. Topp,
Wayana Dolan,
Ethan D. Kyzivat,
Alain Pietroniro,
Philip Marsh,
Daqing Yang,
Tom Carter,
Cuyler Onclin,
Nasim Hosseini,
Evan J. Wilcox,
Daniel Medeiros Moreira,
Muriel Bergé‐Nguyen,
Jean‐François Crétaux,
Tamlin M. Pavelsky
Frontiers in Earth Science, Volume 8
To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world’s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∼8 cm, WSS RMSD ∼1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∼3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA’s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System.
2019
Abstract. Hydrologic-Land Surface Models (H-LSMs) have been progressively developed to a stage where they represent the dominant hydrological processes for a variety of hydrological regimes and include a range of water management practices, and are increasingly used to simulate water storages and fluxes of large basins under changing environmental conditions across the globe. However, efforts for comprehensive evaluation of the utility of H-LSMs in large, regulated watersheds have been limited. In this study, we evaluated the capability of a Canadian H-LSM, called MESH, in the highly regulated Saskatchewan River Basin (SaskRB), Canada, under the constraint of significant precipitation uncertainty. The SaskRB is a complex system characterized by hydrologically-distinct regions that include the Rocky Mountains, Boreal Forest, and the Prairies. This basin is highly vulnerable to potential climate change and extreme events. A comprehensive analysis of the MESH model performance was carried out in two steps. First, the reliability of multiple precipitation products was evaluated against climate station observations and based on their performance in simulating streamflow across the basin when forcing the MESH model with a default parameterization. Second, a state-of-the-art multi-criteria calibration approach was applied, using various observational information including streamflow, storage and fluxes for calibration and validation. The first analysis shows that the quality of precipitation products had a direct and immediate impact on simulation performance for the basin headwaters but effects were dampened when going downstream. In particular, the Canadian Precipitation Analysis (CaPA) performed the best among the precipitation products in capturing timings and minimizing the magnitude of error against observation, despite a general underestimation of precipitation amount. The subsequent analyses show that the MESH model was able to capture observed responses of multiple fluxes and storage across the basin using a global multi-station calibration method. Despite poorer performance in some basins, the global parameterization generally achieved better model performance than a default model parameterization. Validation using storage anomaly and evapotranspiration generally showed strong correlation with observations, but revealed potential deficiencies in the simulation of storage anomaly over open water areas.
Abstract Land models are increasingly used and preferred in terrestrial hydrological prediction applications. One reason for selecting land models over simpler models is that their physically based backbone enables wider application under different conditions. This study evaluates the temporal variability in streamflow simulations in land models. Specifically, we evaluate how the subsurface structure and model parameters control the partitioning of water into different flow paths and the temporal variability in streamflow. Moreover, we use a suite of model diagnostics, typically not used in the land modeling community to clarify model weaknesses and identify a path toward model improvement. Our analyses show that the typical land model structure, and their functions for moisture movement between soil layers (an approximation of Richards equation), has a distinctive signature where flashy runoff is superimposed on slow recessions. This hampers the application of land models in simulating flashier basins and headwater catchments where floods are generated. We demonstrate the added value of the preferential flow in the model simulation by including macropores in both a toy model and the Variable Infiltration Capacity model. We argue that including preferential flow in land models is essential to enable their use for multiple applications across a myriad of temporal and spatial scales.
DOI
bib
abs
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
W. L. Quinton,
Aaron Berg,
Michael Braverman,
Olivia Carpino,
L. Chasmer,
Ryan F. Connon,
James R. Craig,
Élise Devoie,
Masaki Hayashi,
Kristine M. Haynes,
David Olefeldt,
Alain Pietroniro,
Fereidoun Rezanezhad,
Robert A. Schincariol,
Oliver Sonnentag
Hydrology and Earth System Sciences, Volume 23, Issue 4
Abstract. Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.
2017
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so-called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high-fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow-based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land-surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.