Alan Barr


2023

DOI bib
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, Jochen Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331

Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.

2022

DOI bib
Using observed soil moisture to constrain the uncertainty of simulated hydrological fluxes
A. M. Ireson, Ines Sanchez‐Rodriguez, Sujan Basnet, Haley Brauner, Talia Bobenic, Rosa Brannen, Mennatullah Elrashidy, Morgan Braaten, Seth K. Amankwah, Alan Barr
Hydrological Processes, Volume 36, Issue 1

Using data from five long-term field sites measuring soil moisture, we show the limitations of using soil moisture observations alone to constrain modelled hydrological fluxes. We test a land surface model, Modélisation Environnementale communautaire-Surface Hydrology/Canadian Land Surface Scheme, with two configurations: one where the soil hydraulic properties are determined using a pedotransfer function (the texture-based calibration) and one where they are assigned directly (the hydraulic properties-based calibration). The hydraulic properties-based calibration outperforms the texture-based calibration in terms of reproducing changes in soil moisture storage within a 1.6 m deep profile at each site, but both perform reasonably well, especially in the summer months. When the models are constrained using observations of changes in soil moisture, the predicted hydrological fluxes are subject to very large uncertainties associated with equifinality. The uncertainty is larger for the hydraulic properties-based calibration, even though the performance was better. We argue that since the pedotransfer functions constrain the model parameters in the texture-based calibrations in an unrealistic way, the texture-based calibration underestimates the uncertainty in the fluxes. We recommend that reproducing observed cumulative changes in soil moisture storage should be considered a necessary but insufficient criterion of model success. Additional sources of information are needed to reduce uncertainties, and these could include improved estimation of the soil hydraulic properties and direct observations of fluxes, particularly evapotranspiration.

DOI bib
What explains the year-to-year variation in growing season timing of boreal black spruce forests?
Mariam El-Amine, Alexandre Roy, Franziska Koebsch, Jennifer L. Baltzer, Alan Barr, Andrew Black, Hiroki Ikawa, Hiroyasu Iwata, Hideki Kobayashi, Masahito Ueyama, Oliver Sonnentag
Agricultural and Forest Meteorology, Volume 324

Amplified climate warming in high latitudes is expected to affect growing season timing of the vast boreal biome. It is unclear whether the presence of permafrost (perennially frozen ground) might have an influence on changes in growing season timing. This study examined how different environmental variables explained, either directly or indirectly, the variation in growing season timing of boreal forest stands with and without permafrost. We expected that environmental variables explaining the variation in growing season timing differed or had different explanatory power depending on permafrost presence or absence. The growing season was delineated from daily gross primary productivity (GPP) time series derived from 40 site-year data of net ecosystem carbon dioxide exchange measured with eddy covariance techniques over five black spruce (Picea mariana [Mill.])-dominated boreal forest stands in North America. In permafrost-free forest stands, a combination of start in canopy ‘green-up’ in spring and the timing of air and soil temperature increasing above freezing explained the start-of-season (SOSGPP). Results from commonality analysis and structural equation modeling suggest that canopy ‘green-up’ and air temperature directly affected SOSGPP in permafrost-free forest stands. In addition, soil temperature acted as mediator for an indirect effect of air temperature on SOSGPP. In contrast, none of the environmental variables, or their combination, explained the variation in SOSGPP in forest stands with permafrost. The explanatory power of environmental variables was more consistent regarding the end-of-season (EOSGPP). In both, forest stands with and without permafrost, EOSGPP was directly explained by mean soil water content in the fall and the first day of continuous snowpack formation. A better understanding how environmental variables control SOSGPP and EOSGPP in forest stands with and without permafrost will help to refine parameterizations of the boreal biome in Earth system models.

2021

DOI bib
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, David R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, Jochen Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5

The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.

DOI bib
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Lucas-Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 8, Issue 1

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, A. M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, M. N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

2020

DOI bib
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Maria Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 7, Issue 1

Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
Search
Co-authors
Venues