Alessandro Cescatti


2021

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, William J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroyasu Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, M. S. Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, Lisamarie Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

2020

DOI bib
Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel S. Goll, Oliviér Boucher, Zhaoxin Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan H. Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, María José Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, Philippe Ciais
Geoscientific Model Development, Volume 13, Issue 11

Abstract. Aerosol- and cloud-induced changes in diffuse light have important impacts on the global land carbon cycle, as they alter light distribution and photosynthesis in vegetation canopies. However, this effect remains poorly represented or evaluated in current land surface models. Here, we add a light partitioning module and a new canopy light transmission module to the ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) land surface model (trunk version, v5453) and use the revised model, ORCHIDEE_DF, to estimate the fraction of diffuse light and its effect on gross primary production (GPP) in a multilayer canopy. We evaluate the new parameterizations using flux observations from 159 eddy covariance sites over the globe. Our results show that, compared with the original model, ORCHIDEE_DF improves the GPP simulation under sunny conditions and captures the observed higher photosynthesis under cloudier conditions in most plant functional types (PFTs). Our results also indicate that the larger GPP under cloudy conditions compared with sunny conditions is mainly driven by increased diffuse light in the morning and in the afternoon as well as by a decreased vapor pressure deficit (VPD) and decreased air temperature at midday. The observations show that the strongest positive effects of diffuse light on photosynthesis are found in the range from 5 to 20 ∘C and at a VPD < 1 kPa. This effect is found to decrease when the VPD becomes too large or the temperature falls outside of the abovementioned range, which is likely due to the increasing stomatal resistance to leaf CO2 uptake. ORCHIDEE_DF underestimates the diffuse light effect at low temperature in all PFTs and overestimates this effect at high temperature and at a high VPD in grasslands and croplands. The new model has the potential to better investigate the impact of large-scale aerosol changes and long-term changes in cloudiness on the terrestrial carbon budget, both in the historical period and in the context of future air quality policies and/or climate engineering.

2018

DOI bib
Quantifying the effect of forest age in annual net forest carbon balance
Simon Besnard, Nuno Carvalhais, M. Altaf Arain, Andrew Black, Sytze de Bruin, Nina Buchmann, Alessandro Cescatti, Jiquan Chen, J.G.P.W. Clevers, Ankur R. Desai, Christopher M. Gough, Kateřina Havránková, Martin Herold, Lukas Hörtnagl, Martin Jung, Alexander Knohl, Bart Kruijt, Lenka Krupková, Beverly E. Law, Anders Lindroth, Asko Noormets, Olivier Roupsard, R. Steinbrecher, Andrej Varlagin, Caroline Vincke, Markus Reichstein
Environmental Research Letters, Volume 13, Issue 12

Forests dominate carbon (C) exchanges between the terrestrial biosphere and the atmosphere on land. In the long term, the net carbon flux between forests and the atmosphere has been significantly impacted by changes in forest cover area and structure due to ecological disturbances and management activities. Current empirical approaches for estimating net ecosystem productivity (NEP) rarely consider forest age as a predictor, which represents variation in physiological processes that can respond differently to environmental drivers, and regrowth following disturbance. Here, we conduct an observational synthesis to empirically determine to what extent climate, soil properties, nitrogen deposition, forest age and management influence the spatial and interannual variability of forest NEP across 126 forest eddy-covariance flux sites worldwide. The empirical models explained up to 62% and 71% of spatio-temporal and across-site variability of annual NEP, respectively. An investigation of model structures revealed that forest age was a dominant factor of NEP spatio-temporal variability in both space and time at the global scale as compared to abiotic factors, such as nutrient availability, soil characteristics and climate. These findings emphasize the importance of forest age in quantifying spatio-temporal variation in NEP using empirical approaches.

DOI bib
Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones
J. von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gérard Kiely, B. E. Law, Vincenzo Magliulo, Hank A. Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter C. Oechel, Marián Pavelka, Matthias Peichl, Serge Rambal, A. Raschi, Russell L. Scott, Francesco Primo Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, Miguel D. Mahecha
Biogeosciences, Volume 15, Issue 5

Abstract. Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem–atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies but as a novelty generalizes these findings on the global scale. Specifically, we find that the different response functions of the two antipodal land–atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.

2017

DOI bib
Impacts of droughts and extreme temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones
J. von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kieley, B. E. Law, Vincenzo Magliulo, Hank A. Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, W. C. Oechel, Marián Pavelka, Matthias Peichl, Serge Rambal, A. Raschi, Russell L. Scott, Francesco Primo Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, Miguel D. Mahecha

Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
Search
Co-authors
Venues