2022
DOI
bib
abs
Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities
Patrick M. D’Aoust,
Xin Tian,
Syeda Tasneem Towhid,
Amy Xiao,
Élisabeth Mercier,
Nada Hegazy,
Jianjun Jia,
Shen Wan,
Md Pervez Kabir,
Wanting Fang,
Meghan Fuzzen,
Maria E. Hasing,
Minqing Ivy Yang,
Jianxian Sun,
Julio Plaza‐Díaz,
Zhihao Zhang,
Aaron Cowan,
Walaa Eid,
Sean Stephenson,
Mark R. Servos,
Matthew J. Wade,
Alex MacKenzie,
Hui Peng,
Elizabeth A. Edwards,
Xiaoli Pang,
Eric J. Alm,
Tyson E. Graber,
Robert Delatolla
Science of The Total Environment, Volume 853
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
2021
DOI
bib
abs
Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence
Patrick M. D’Aoust,
Élisabeth Mercier,
Danika Montpetit,
Jian-Jun Jia,
I. V. Alexandrov,
Nafisa Neault,
Aiman Tariq Baig,
Janice Mayne,
Xu Zhang,
Tommy Alain,
Marc‐André Langlois,
Mark R. Servos,
Malcolm R. MacKenzie,
Daniel Figeys,
Alex MacKenzie,
Tyson E. Graber,
Robert Delatolla
Water Research, Volume 188
• RT-ddPCR is more sensitive to inhibitors than RT-qPCR for primary clarified sludge. • Primary clarified sludge has elevated frequency of SARS-CoV-2 RNA detection. • Primary clarified sludge allows detection of RNA during low COVID-19 incidence. • PMMoV normalization of RNA data reduces noise and increases precision. • PMMoV normalization of RNA shows strongest correlation to epidemiological metrics. In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.
DOI
bib
abs
Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations
Patrick M. D’Aoust,
Tyson E. Graber,
Élisabeth Mercier,
Danika Montpetit,
I. V. Alexandrov,
Nafisa Neault,
Aiman Tariq Baig,
Janice Mayne,
Xu Zhang,
Tommy Alain,
Mark R. Servos,
Nivetha Srikanthan,
Malcolm R. MacKenzie,
Daniel Figeys,
Douglas G. Manuel,
Peter Jüni,
Alex MacKenzie,
Robert Delatolla
Science of The Total Environment, Volume 770
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.