Amber Peterson


2021

DOI bib
Sensitivity analysis of hydrological processes to perturbed climate in a southern boreal forest basin
Zhihua He, John W. Pomeroy, Xing Fang, Amber Peterson, Zhihua He, John W. Pomeroy, Xing Fang, Amber Peterson
Journal of Hydrology, Volume 601

• The CRHM-created Boreal Hydrology Model performed quite well on simultaneously simulating runoff, snow water equivalent, soil liquid water content and evapotranspiration (ET) with minor parameter calibration. • The basin hydrological variables showed quite different sensitivities to perturbations of precipitation (P) and temperature (T). Annual runoff was more sensitive to rising P than warming T, but annual ET was more sensitive to warming T. • Perturbed P and T had distinctively different influences on the streamflow regime. Increased P enhanced the intra- and inter-annual variabilities of basin runoff, whilst rising T resulted in the inverse changes. • Effects of warming on annual runoff and snow processes could be compensated for to varying degrees by the effects of increases in P. Hydrological processes over and through frozen and unfrozen ground were simulated in the well instrumented boreal forest basin of White Gull Creek, Saskatchewan, Canada using a model created using the flexible Cold Regions Hydrological Modelling (CRHM) platform. The CRHM-created Boreal Hydrology Model was structured and initially parameterized using decades of process hydrology research in the southern boreal forest with minor parameter calibration, and generally produced quite good performance on simultaneously reproducing the measurements of runoff, snow water equivalent (SWE), soil liquid water content and eddy correlation flux tower observations of evapotranspiration (ET) over two decades. To examine the sensitivity of basin hydrology to perturbed climate inputs, air temperature (T) inputs were set up by linear increments in the reference observation of up to +6 ℃, and precipitation (P) inputs were generated by multiplying the reference observed P from 70% to 130%. The model results showed that the basin hydrological variables showed quite different sensitivities to perturbations of P and T. The volume of annual runoff and the annual runoff coefficient increased more rapidly with rising P, at rates of 31% and 16% per 10% increase in P, but decreased by only 3.8% and 4.7% per 1 ℃ of warming. Annual ET increased rapidly with temperature, by 7% per 1 ℃ of warming and therefore drove the streamflow volumetric changes with warming, but increased only 1% per 10% increase in P. Perturbations of P and T had distinctively different influences on the streamflow regime. Increased P enhanced the intra- and inter-annual variabilities of basin runoff, reduced the relative contribution of winter runoff to annual runoff and increased the relative contribution of summer runoff; whilst rising T resulted in the inverse changes in the streamflow regime. Effects of warming on some hydrological processes could be compensated for to varying degrees by the effects of increases in P. Reductions in the annual runoff volume and runoff coefficient caused by warming up to 6 ℃ could be compensated for by increases of <20% in P. However, the maximum increase in P (+30%) examined could only compensate for the changes in snow processes caused by warming of less than 4 ℃ and snow-cover duration decreases with 1 ℃ warming could not be compensated for by any precipitation increase considered. These results inform the vulnerability of boreal forest hydrology to the first-order changes in P and T and provide guidance for further climate impact assessments for hydrology in the southern boreal forest in Canada.

DOI bib
Sensitivity analysis of hydrological processes to perturbed climate in a southern boreal forest basin
Zhihua He, John W. Pomeroy, Xing Fang, Amber Peterson, Zhihua He, John W. Pomeroy, Xing Fang, Amber Peterson
Journal of Hydrology, Volume 601

• The CRHM-created Boreal Hydrology Model performed quite well on simultaneously simulating runoff, snow water equivalent, soil liquid water content and evapotranspiration (ET) with minor parameter calibration. • The basin hydrological variables showed quite different sensitivities to perturbations of precipitation (P) and temperature (T). Annual runoff was more sensitive to rising P than warming T, but annual ET was more sensitive to warming T. • Perturbed P and T had distinctively different influences on the streamflow regime. Increased P enhanced the intra- and inter-annual variabilities of basin runoff, whilst rising T resulted in the inverse changes. • Effects of warming on annual runoff and snow processes could be compensated for to varying degrees by the effects of increases in P. Hydrological processes over and through frozen and unfrozen ground were simulated in the well instrumented boreal forest basin of White Gull Creek, Saskatchewan, Canada using a model created using the flexible Cold Regions Hydrological Modelling (CRHM) platform. The CRHM-created Boreal Hydrology Model was structured and initially parameterized using decades of process hydrology research in the southern boreal forest with minor parameter calibration, and generally produced quite good performance on simultaneously reproducing the measurements of runoff, snow water equivalent (SWE), soil liquid water content and eddy correlation flux tower observations of evapotranspiration (ET) over two decades. To examine the sensitivity of basin hydrology to perturbed climate inputs, air temperature (T) inputs were set up by linear increments in the reference observation of up to +6 ℃, and precipitation (P) inputs were generated by multiplying the reference observed P from 70% to 130%. The model results showed that the basin hydrological variables showed quite different sensitivities to perturbations of P and T. The volume of annual runoff and the annual runoff coefficient increased more rapidly with rising P, at rates of 31% and 16% per 10% increase in P, but decreased by only 3.8% and 4.7% per 1 ℃ of warming. Annual ET increased rapidly with temperature, by 7% per 1 ℃ of warming and therefore drove the streamflow volumetric changes with warming, but increased only 1% per 10% increase in P. Perturbations of P and T had distinctively different influences on the streamflow regime. Increased P enhanced the intra- and inter-annual variabilities of basin runoff, reduced the relative contribution of winter runoff to annual runoff and increased the relative contribution of summer runoff; whilst rising T resulted in the inverse changes in the streamflow regime. Effects of warming on some hydrological processes could be compensated for to varying degrees by the effects of increases in P. Reductions in the annual runoff volume and runoff coefficient caused by warming up to 6 ℃ could be compensated for by increases of <20% in P. However, the maximum increase in P (+30%) examined could only compensate for the changes in snow processes caused by warming of less than 4 ℃ and snow-cover duration decreases with 1 ℃ warming could not be compensated for by any precipitation increase considered. These results inform the vulnerability of boreal forest hydrology to the first-order changes in P and T and provide guidance for further climate impact assessments for hydrology in the southern boreal forest in Canada.

DOI bib
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin, Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin
Hydrological Processes, Volume 35, Issue 11

Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.

DOI bib
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin, Bhaleka Persaud, Krysha A. Dukacz, Gopal Chandra Saha, Amber Peterson, L. Moradi, Stephen O'Hearn, Erin Clary, Juliane Mai, Michael Steeleworthy, Jason J. Venkiteswaran, Homa Kheyrollah Pour, Brent B. Wolfe, Sean K. Carey, John W. Pomeroy, C. M. DeBeer, J. M. Waddington, Philippe Van Cappellen, Jimmy Lin
Hydrological Processes, Volume 35, Issue 11

Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.