André Bertoncini


2023

DOI bib
Fire and Ice: The Impact of Wildfire‐Affected Albedo and Irradiance on Glacier Melt
Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy, Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy
Earth's Future, Volume 10, Issue 4

Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well-instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on-ice weather station observations show days with dense smoke were warmer than clear, non-smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m−2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m−2, producing an average 15 W m−2 decrease in net radiation. Albedo observed on-ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all-wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire-impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.

DOI bib
Fire and Ice: The Impact of Wildfire‐Affected Albedo and Irradiance on Glacier Melt
Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy, Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy
Earth's Future, Volume 10, Issue 4

Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well-instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on-ice weather station observations show days with dense smoke were warmer than clear, non-smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m−2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m−2, producing an average 15 W m−2 decrease in net radiation. Albedo observed on-ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all-wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire-impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.

2022

DOI bib
Storms and Precipitation Across the continental Divide Experiment (SPADE)
Julie M. Thériault, Nicolas Leroux, Ronald E. Stewart, André Bertoncini, Stephen J. Déry, John W. Pomeroy, Hadleigh D. Thompson, Hilary M. Smith, Zen Mariani, Aurélie Desroches-Lapointe, S. G. Mitchell, Juris Almonte
Bulletin of the American Meteorological Society, Volume 103, Issue 11

Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.

DOI bib
Large-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt
André Bertoncini, Caroline Aubry‐Wake, John W. Pomeroy
Remote Sensing of Environment, Volume 278

Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km2), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m2 for southeast-facing glaciers (2018 to 2020) and 106 W/m2 for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches.

DOI bib
Fire and Ice: The Impact of Wildfire‐Affected Albedo and Irradiance on Glacier Melt
Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy, Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy
Earth's Future, Volume 10, Issue 4

Abstract Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well‐instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on‐ice weather station observations show days with dense smoke were warmer than clear, non‐smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m −2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m −2 , producing an average 15 W m −2 decrease in net radiation. Albedo observed on‐ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all‐wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire‐impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.

DOI bib
Fire and Ice: The Impact of Wildfire‐Affected Albedo and Irradiance on Glacier Melt
Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy, Caroline Aubry‐Wake, André Bertoncini, John W. Pomeroy
Earth's Future, Volume 10, Issue 4

Abstract Wildfire occurrence and severity is predicted to increase in the upcoming decades with severe negative impacts on human societies. The impacts of upwind wildfire activity on glacier melt, a critical source of freshwater for downstream environments, were investigated through analysis of field and remote sensing observations and modeling experiments for the 2015–2020 melt seasons at the well‐instrumented Athabasca Glacier in the Canadian Rockies. Upwind wildfire activity influenced surface glacier melt through both a decrease in the surface albedo from deposition of soot on the glacier and through the impact of smoke on atmospheric conditions above the glacier. Athabasca Glacier on‐ice weather station observations show days with dense smoke were warmer than clear, non‐smoky days, and sustained a reduction in surface shortwave irradiance of 103 W m −2 during peak shortwave irradiance and an increase in longwave irradiance of 10 W m −2 , producing an average 15 W m −2 decrease in net radiation. Albedo observed on‐ice gradually decreased after the wildfires started, from a summer average of 0.29 in 2015 before the wildfires to as low as 0.16 in 2018 after extensive wildfires and remained low for two more melt seasons without substantial upwind wildfires. Reduced all‐wave irradiance partly compensated for the increase in melt due to lowered albedo in those seasons when smoke was detected above Athabasca Glacier. In melt seasons without smoke, the suppressed albedo increased melt by slightly more than 10% compared to the simulations without fire‐impacted albedo, increasing melt by 0.42 m. w.e. in 2019 and 0.37 m. w.e. in 2020.

2021

DOI bib
Meteorological observations collected during the Storms and Precipitation Across the continental Divide Experiment (SPADE), April–June 2019
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, S. G. Mitchell, Jeremy Morris, Charlie Hébert-Pinard, Peter Rodriguez, Hadleigh D. Thompson
Earth System Science Data, Volume 13, Issue 3

Abstract. The continental divide along the spine of the Canadian Rockies in southwestern Canada is a critical headwater region for hydrological drainages to the Pacific, Arctic, and Atlantic oceans. Major flooding events are typically attributed to heavy precipitation on its eastern side due to upslope (easterly) flows. Precipitation can also occur on the western side of the divide when moisture originating from the Pacific Ocean encounters the west-facing slopes of the Canadian Rockies. Often, storms propagating across the divide result in significant precipitation on both sides. Meteorological data over this critical region are sparse, with few stations located at high elevations. Given the importance of all these types of events, the Storms and Precipitation Across the continental Divide Experiment (SPADE) was initiated to enhance our knowledge of the atmospheric processes leading to storms and precipitation on either side of the continental divide. This was accomplished by installing specialized meteorological instrumentation on both sides of the continental divide and carrying out manual observations during an intensive field campaign from 24 April–26 June 2019. On the eastern side, there were two field sites: (i) at Fortress Mountain Powerline (2076 m a.s.l.) and (ii) at Fortress Junction Service, located in a high-elevation valley (1580 m a.s.l.). On the western side, Nipika Mountain Resort, also located in a valley (1087 m a.s.l.), was chosen as a field site. Various meteorological instruments were deployed including two Doppler light detection and ranging instruments (lidars), three vertically pointing micro rain radars, and three optical disdrometers. The three main sites were nearly identically instrumented, and observers were on site at Fortress Mountain Powerline and Nipika Mountain Resort during precipitation events to take manual observations of precipitation type and microphotographs of solid particles. The objective of the field campaign was to gather high-temporal-frequency meteorological data and to compare the different conditions on either side of the divide to study the precipitation processes that can lead to catastrophic flooding in the region. Details on field sites, instrumentation used, and collection methods are discussed. Data from the study are publicly accessible from the Federated Research Data Repository at https://doi.org/10.20383/101.0221 (Thériault et al., 2020). This dataset will be used to study atmospheric conditions associated with precipitation events documented simultaneously on either side of a continental divide. This paper also provides a sample of the data gathered during a precipitation event.