Annie Gray


2021

DOI bib
CWDAT—An Open-Source Tool for the Visualization and Analysis of Community-Generated Water Quality Data
Annie Gray, Colin Robertson, Rob Feick
ISPRS International Journal of Geo-Information, Volume 10, Issue 4

Citizen science initiatives span a wide range of topics, designs, and research needs. Despite this heterogeneity, there are several common barriers to the uptake and sustainability of citizen science projects and the information they generate. One key barrier often cited in the citizen science literature is data quality. Open-source tools for the analysis, visualization, and reporting of citizen science data hold promise for addressing the challenge of data quality, while providing other benefits such as technical capacity-building, increased user engagement, and reinforcing data sovereignty. We developed an operational citizen science tool called the Community Water Data Analysis Tool (CWDAT)—a R/Shiny-based web application designed for community-based water quality monitoring. Surveys and facilitated user-engagement were conducted among stakeholders during the development of CWDAT. Targeted recruitment was used to gather feedback on the initial CWDAT prototype’s interface, features, and potential to support capacity building in the context of community-based water quality monitoring. Fourteen of thirty-two invited individuals (response rate 44%) contributed feedback via a survey or through facilitated interaction with CWDAT, with eight individuals interacting directly with CWDAT. Overall, CWDAT was received favourably. Participants requested updates and modifications such as water quality thresholds and indices that reflected well-known barriers to citizen science initiatives related to data quality assurance and the generation of actionable information. Our findings support calls to engage end-users directly in citizen science tool design and highlight how design can contribute to users’ understanding of data quality. Enhanced citizen participation in water resource stewardship facilitated by tools such as CWDAT may provide greater community engagement and acceptance of water resource management and policy-making.

DOI bib
InundatEd-v1.0: a height above nearest drainage (HAND)-based flood risk modeling system using a discrete global grid system
Chiranjib Chaudhuri, Annie Gray, Colin Robertson
Geoscientific Model Development, Volume 14, Issue 6

Abstract. Despite the high historical losses attributed to flood events, Canadian flood mitigation efforts have been hindered by a dearth of current, accessible flood extent/risk models and maps. Such resources often entail large datasets and high computational requirements. This study presents a novel, computationally efficient flood inundation modeling framework (“InundatEd”) using the height above nearest drainage (HAND)-based solution for Manning's equation, implemented in a big-data discrete global grid system (DGGS)-based architecture with a web-GIS (Geographic Information Systems) platform. Specifically, this study aimed to develop, present, and validate InundatEd through binary classification comparisons to recently observed flood events. The framework is divided into multiple swappable modules including GIS pre-processing; regional regression; inundation models; and web-GIS visualization. Extent testing and processing speed results indicate the value of a DGGS-based architecture alongside a simple conceptual inundation model and a dynamic user interface.

2020

DOI bib
InundatEd: A Large-scale Flood Risk Modeling System on a Big-data – Discrete Global Grid System Framework
Chiranjib Chaudhuri, Annie Gray, Colin Robertson

Abstract. Despite the high historical losses attributed to flood events, Canadian flood mitigation efforts have been hindered by a dearth of current, accessible flood extent/risk models and maps. Such resources often entail large datasets and high computational requirements. This study presents a novel, computationally efficient flood inundation modeling framework (InundatEd) using the height above the nearest drainage-based solution for Manning's equation, implemented in a big-data discrete global grid systems-based architecture with a web-GIS platform. Specifically, this study aimed to develop, present, and validate InundatEd through binary classification comparisons to known flood extents. The framework is divided into multiple swappable modules including GIS pre-processing; regional regression; inundation model; and web-GIS visualization. Extent testing and processing speed results indicate the value of a DGGS-based architecture alongside a simple conceptual inundation model and a dynamic user interface.