Avijit Bhattacharjee


DOI bib
Supporting program comprehension by generating abstract code summary tree
Avijit Bhattacharjee, Banani Roy, Kevin A. Schneider
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results

Reading through code, finding relevant methods, classes and files takes a significant portion of software development time. Having good tool support for this code browsing activity can reduce human effort and increase overall developer productivity. To help with program comprehension activities, building an abstract code summary of a software system from its call graph is an active research area. A call graph is a visual representation of the caller-callee relationships between different methods of a software system. Call graphs can be difficult to comprehend for a large code-base. Previous work by Gharibi et al. on abstract code summarizing suggested using the Agglomerative Hierarchical Clustering (AHC) tree for understanding the codebase. Each node in the tree is associated with the top five method names. When we replicated the previous approach, we observed that the number of nodes in the AHC tree is burdensome for developers to explore. We also noticed only five method names for each node is not sufficient to comprehend an abstract node. We propose a technique to transform the AHC tree using cluster flattening for natural grouping and reduced nodes. We also generate a natural text summary for each abstract node derived from method comments. In order to evaluate our proposed approach, we collected developers’ opinions about the abstract code summary tree based on their codebase. The evaluation results confirm that our approach can not only help developers get an overview of their codebases but also could assist them in doing specific software maintenance tasks.

DOI bib
Supporting Readability by Comprehending the Hierarchical Abstraction of a Software Project
Avijit Bhattacharjee, Banani Roy, Kevin A. Schneider
15th Innovations in Software Engineering Conference

Exploring the source code of a software system is a prevailing task that is frequently done by contributors to a system. Practitioners often use call graphs to aid in understanding the source code of an inadequately documented software system. Call graphs, when visualized, show caller and callee relationships between functions. A static call graph provides an overall structure of a software system and dynamic call graphs generated from dynamic execution logs can be used to trace program behaviour for a particular scenario. Unfortunately a call graph of an entire system can be very complicated and hard to understand. Hierarchically abstracting a call graph can be used to summarize an entire system’s structure and more easily comprehending function calls. In this work, we mine concepts from source code entities (functions) to generate a concept cluster tree with improved naming of cluster nodes to complement existing studies and facilitate more effective program comprehension for developers. We apply three different information retrieval techniques (TFIDF, LDA, and LSI) on function names and function name variants to label the nodes of a concept cluster tree generated by clustering execution paths. From our experiment in comparing automatic labelling with manual labeling by participants for 12 use cases, we found that among the techniques on average, TFIDF performs better with 64% matching. LDA and LSI had 37% and 23% matching respectively. In addition, using the words in function name variants performed at least 5% better in participant ratings for all three techniques on average for the use cases.


DOI bib
An Exploratory Study to Find Motives Behind Cross-platform Forks from Software Heritage Dataset
Avijit Bhattacharjee, Sristy Sumana Nath, Shurui Zhou, Debasish Chakroborti, Banani Roy, Chanchal K. Roy, Kevin A. Schneider
Proceedings of the 17th International Conference on Mining Software Repositories

The fork-based development mechanism provides the flexibility and the unified processes for software teams to collaborate easily in a distributed setting without too much coordination overhead.Currently, multiple social coding platforms support fork-based development, such as GitHub, GitLab, and Bitbucket. Although these different platforms virtually share the same features, they have different emphasis. As GitHub is the most popular platform and the corresponding data is publicly available, most of the current studies are focusing on GitHub hosted projects. However, we observed anecdote evidences that people are confused about choosing among these platforms, and some projects are migrating from one platform to another, and the reasons behind these activities remain unknown.With the advances of Software Heritage Graph Dataset (SWHGD),we have the opportunity to investigate the forking activities across platforms. In this paper, we conduct an exploratory study on 10popular open-source projects to identify cross-platform forks and investigate the motivation behind. Preliminary result shows that cross-platform forks do exist. For the 10 subject systems in this study, we found 81,357 forks in total among which 179 forks are on GitLab. Based on our qualitative analysis, we found that most of the cross-platform forks that we identified are mirrors of the repositories on another platform, but we still find cases that were created due to preference of using certain functionalities (e.g. Continuous Integration (CI)) supported by different platforms. This study lays the foundation of future research directions, such as understanding the differences between platforms and supporting cross-platform collaboration.