Behrad Gharedaghloo


DOI bib
Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes
Colin P.R. McCarter, Fereidoun Rezanezhad, William L. Quinton, Behrad Gharedaghloo, Bernd Lennartz, Jonathan S. Price, Ryan F. Connon, Philippe Van Cappellen
Earth-Science Reviews, Volume 207

Peatlands are wetlands that provide important ecosystem services including carbon sequestration and water storage that respond to hydrological, biological, and biogeochemical processes. These processes are strongly influenced by the complex pore structure of peat soils. We explore the literature on peat pore structure and the implications for hydrological, biogeochemical, and microbial processes in peat, highlighting the gaps in our current knowledge and a path to move forward. Peat is an elastic and multi-porous structured organic soil. Surficial (near-surface) peats are typically dominated by large interconnected macropores that rapidly transmit water and solutes when saturated, but these large pores drain rapidly with a reduction in pore-water pressure, and disproportionally decrease the bulk effective hydraulic conductivity, thus water fluxes that drive ecohydrological functions. The more advanced state of decomposition of older (deeper) peat, with a greater abundance of small pores, restricts the loss of moisture at similar soil water pressures and is associated with higher unsaturated hydraulic conductivities. As evaporation and precipitation occur, peat soils shrink and swell, respectively, changing the hydrological connectivity that maintain physiological processes at the peat surface. Due to the disproportionate change in pore structure and associated hydraulic properties with state of decomposition, transport processes are limited at depth, creating a zone of enhanced transport in the less decomposed peat near the surface. At the micro-scale, rapid equilibration of solutes and water occurs between the mobile and immobile pores due to diffusion, resulting in pore regions with similar chemical concentrations that are not affected by advective fluxes. These immobile regions may be the primary sites for microbial biogeochemical processes in peat. Mass transfer limitations may therefore largely regulate belowground microbial turnover and, hence, biogeochemical cycling. For peat, the development of a comprehensive theory that links the hydrological, biological, and biogeochemical processes will require a concerted interdisciplinary effort. To that end, we have highlighted four primary areas to focus our collective research: 1) understanding the combined and interrelated effects of parent material, decomposition, and nutrient status on peat pore connectivity, macropore development and collapse, and solute transport, 2) determining the influence of changing pore structure due to freeze-thaw or dewatering on the hydrology and biogeochemistry, 3) better elucidating the non-equilibrium transport processes in peat, and 4) exploring the implications of peat’s pore structure on microbiological and biogeochemical processes.


DOI bib
Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal
Brenden Ding, Fereidoun Rezanezhad, Behrad Gharedaghloo, Philippe Van Cappellen, Elodie Passeport
Science of The Total Environment, Volume 649

Bioretention cells are a popular control strategy for stormwater volume and quality, but their efficiency for water infiltration and nutrient removal under cold climate conditions has been poorly studied. In this work, soil cores were collected from an active bioretention cell containing engineered soil material amended with a phosphate sorbent medium. The cores were used in laboratory column experiments conducted to obtain a detailed characterization of the soil's bioretention performance during six consecutive freeze-thaw cycles (FTCs, from -10 to +10 °C). At the start of each FTC, the experimental column undergoing the FTCs and a control column kept at room temperature were supplied with a solution containing 25 mg/L of bromide, nitrate and phosphate. Water saturated conditions were established to mimic the presence of an internal water storage zone to support anaerobic nitrate removal. At the end of each FTC, the pore solution was allowed to drain from the columns. The results indicate that the FTCs enhanced the infiltration efficiency of the soil: with each successive cycle the drainage rate increased in the experimental column. Freezing and thawing also increased the saturated hydraulic conductivity of the bioretention soil. X-ray tomography imaging identified a key role of macro-pore formation in maintaining high infiltration rates. Both aqueous nitrate and phosphate supplied to the columns were nearly completely removed from solution. Sufficiently long retention times and the presence of the internal water storage zone promoted anaerobic nitrate elimination despite the low temperatures. Dissolved phosphate was efficiently trapped at all depths in the soil columns, with ≤2% of the added stormwater phosphate recovered in the drainage effluent. These findings imply that, when designed properly, bioretention cells can support high infiltration rates and mitigate nutrient pollution in cold climates.