Benjamin R. K. Runkle


2022

DOI bib
Vegetation type is an important predictor of the arctic summer land surface energy budget
Jacqueline Oehri, Gabriela Schaepman‐Strub, Jin‐Soo Kim, Raleigh Grysko, Heather Kropp, Inge Grünberg, Vitalii Zemlianskii, Oliver Sonnentag, E. S. Euskirchen, Merin Reji Chacko, Giovanni Muscari, Peter D. Blanken, Joshua Dean, Alcide di Sarra, R. J. Harding, Ireneusz Sobota, Lars Kutzbach, Elena Plekhanova, Aku Riihelä, Julia Boike, Nathaniel B. Miller, Jason Beringer, Efrèn López‐Blanco, Paul C. Stoy, Ryan C. Sullivan, Marek Kejna, Frans‐Jan W. Parmentier, John A. Gamon, Mikhail Mastepanov, Christian Wille, M. Jackowicz-Korczyński, Dirk Nikolaus Karger, W. L. Quinton, Jaakko Putkonen, Dirk van As, Torben R. Christensen, Maria Z. Hakuba, Robert S. Stone, Stefan Metzger, Baptiste Vandecrux, Gerald V. Frost, Martin Wild, Birger Ulf Hansen, Daniela Meloni, Florent Dominé, Mariska te Beest, Torsten Sachs, Aram Kalhori, Adrian V. Rocha, Scott Williamson, Sara Morris, A. L. Atchley, Richard Essery, Benjamin R. K. Runkle, David Holl, Laura Riihimaki, Hiroki Iwata, Edward A. G. Schuur, Christopher J. Cox, Andrey A. Grachev, J. P. McFadden, Robert S. Fausto, Mathias Göckede, Masahito Ueyama, Norbert Pirk, Gijs de Boer, M. Syndonia Bret‐Harte, Matti Leppäranta, Konrad Steffen, Thomas Friborg, Atsumu Ohmura, Colin W. Edgar, Johan Olofsson, Scott Chambers
Nature Communications, Volume 13, Issue 1

Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.

2021

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, A. J. Dolman, Elke Eichelmann, E. S. Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, W. J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart‐Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, Margaret Torn, Eeva‐Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona, Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona, Kuang‐Yu Chang, W. J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats B. Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, Margaret Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, L. Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats B. Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina VR Schäfer, Oliver Sonnentag, Ellen Stuart‐Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita Alberto, David P. Billesbach, Gerardo Celis, A. J. Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G Verfaillie, Christian Wille, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Global Change Biology, Volume 27, Issue 15

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.

DOI bib
Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales
Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Sara Knox, Sheel Bansal, Gavin McNicol, Karina V. R. Schäfer, Cove Sturtevant, Masahito Ueyama, Alex Valach, Dennis Baldocchi, Kyle Delwiche, Ankur R. Desai, E. S. Euskirchen, Jinxun Liu, Annalea Lohila, Avni Malhotra, Lulie Melling, W. J. Riley, Benjamin R. K. Runkle, Jessica Turner, Rodrigo Vargas, Qing Zhu, Tuula Alto, Etienne Fluet‐Chouinard, Mathias Goeckede, Joe R. Melton, Oliver Sonnentag, Timo Vesala, Eric J. Ward, Zhen Zhang, Sarah Féron, Zutao Ouyang, Pavel Alekseychik, Mika Aurela, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Jordan P. Goodrich, Pia Gottschalk, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, Minseok Kang, Franziska Koebsch, Ivan Mammarella, Mats B. Nilsson, Keisuke Ono, Matthias Peichl, Olli Peltola, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Jed P. Sparks, Eeva‐Stiina Tuittila, George L. Vourlitis, Guan Xhuan Wong, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Global Change Biology, Volume 27, Issue 15

While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.

2020

DOI bib
Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Peter D. Blanken, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Inke Forbrich, Thomas Friborg, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Erik Isabelle, Hiroki Iwata, Rachhpal S. Jassal, Mika Korkiakoski, J. Kurbatova, Lars Kutzbach, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Trofim C. Maximov, Joe R. Melton, Paul Moore, Daniel F. Nadeau, Erin M. Nicholls, Mats B. Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Roman Petrov, Anatoly Prokushkin, W. L. Quinton, David E. Reed, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, Ian B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Jessica Turner, Masahito Ueyama, Andrej Varlagin, Martin Wilmking, Steven C. Wofsy, Vyacheslav Zyrianov
Nature Climate Change, Volume 10, Issue 6

The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091–2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.

DOI bib
The biophysical climate mitigation potential of boreal peatlands during the growing season
Manuel Helbig, J. M. Waddington, Pavel Alekseychik, B. D. Amiro, Mika Aurela, Alan Barr, T. Andrew Black, Sean K. Carey, Jiquan Chen, Jinshu Chi, Ankur R. Desai, Allison L. Dunn, E. S. Euskirchen, Lawrence B. Flanagan, Thomas Friborg, Michelle Garneau, Achim Grelle, Silvie Harder, Michal Heliasz, Elyn Humphreys, Hiroki Ikawa, Pierre‐Erik Isabelle, Hiroki Iwata, Rachhpal S. Jassal, Mika Korkiakoski, J. Kurbatova, Lars Kutzbach, Е. Д. Лапшина, Anders Lindroth, Mikaell Ottosson Löfvenius, Annalea Lohila, Ivan Mammarella, Philip Marsh, Paul Moore, Trofim C. Maximov, Daniel F. Nadeau, Erin M. Nicholls, Mats B. Nilsson, Takeshi Ohta, Matthias Peichl, Richard M. Petrone, Anatoly Prokushkin, W. L. Quinton, Nigel T. Roulet, Benjamin R. K. Runkle, Oliver Sonnentag, Ian B. Strachan, Pierre Taillardat, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, Jessica Turner, Masahito Ueyama, Andrej Varlagin, Timo Vesala, Martin Wilmking, Vyacheslav Zyrianov, Christopher Schulze
Environmental Research Letters, Volume 15, Issue 10

Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. © 2020 The Author(s). Published by IOP Publishing Ltd. (Less)
Search
Co-authors
Venues