Benjamin W. Abbott


DOI bib
Nitrous oxide emissions from permafrost-affected soils
Carolina Voigt, Maija E. Marushchak, Benjamin W. Abbott, Christina Biasi, Bo Elberling, Steven D. Siciliano, Oliver Sonnentag, Katherine Stewart, Yuanhe Yang, Pertti J. Martikainen
Nature Reviews Earth & Environment, Volume 1, Issue 8

Soils are sources of the potent greenhouse gas nitrous oxide (N2O) globally, but emissions from permafrost-affected soils have been considered negligible owing to nitrogen (N) limitation. Recent measurements of N2O emissions have challenged this view, showing that vegetated soils in permafrost regions are often small but evident sources of N2O during the growing season (~30 μg N2O–N m−2 day−1). Moreover, barren or sparsely vegetated soils, common in harsh climates, can serve as substantial sources of N2O (~455 μg N2O–N m−2 day−1), demonstrating the importance of permafrost-affected soils in Earth’s N2O budget. In this Review, we discuss N2O fluxes from subarctic, Arctic, Antarctic and alpine permafrost regions, including areas that likely serve as sources (such as peatlands) and as sinks (wetlands, dry upland soils), and estimate global permafrost-affected soil N2O emissions from previously published fluxes. We outline the below-ground N cycle in permafrost regions and examine the environmental conditions influencing N2O dynamics. Climate-change-related impacts on permafrost ecosystems and how these impacts could alter N2O fluxes are reviewed, and an outlook on the major questions and research needs to better constrain the global impact of permafrost N2O emissions is provided.

DOI bib
Carbon release through abrupt permafrost thaw
M. R. Turetsky, Benjamin W. Abbott, Miriam C. Jones, K. M. Walter Anthony, David Olefeldt, Edward A. G. Schuur, Guido Grosse, Peter Kuhry, Gustaf Hugelius, Charles D. Koven, David M. Lawrence, Carolyn Gibson, A. Britta K. Sannel, A. David McGuire
Nature Geoscience, Volume 13, Issue 2


DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, Patrick Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, Jocelyn Egan, Bo Elberling, Eugénie Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie D. Jastrow, Aram Kalhori, Yongwon Kim, J. S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, J. W. Mcfarland, A. David McGuire, Anders Michelsen, C. Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, William L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, Jeffrey M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

DOI bib
Permafrost collapse is accelerating carbon release
M. R. Turetsky, Benjamin W. Abbott, Miriam C. Jones, K. M. Walter Anthony, David Olefeldt, Edward A. G. Schuur, C. Koven, A. D. McGuire, Guido Grosse, Peter Kuhry, Gustaf Hugelius, David M. Lawrence, Carolyn Gibson, A. Britta K. Sannel
Nature, Volume 569, Issue 7754

The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues. The sudden collapse of thawing soils in the Arctic might double the warming from greenhouse gases released from tundra, warn Merritt R. Turetsky and colleagues.


DOI bib
Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
M. M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers‐Smith, Susan M. Natali, J. A. O’Donnell, Gareth K. Phoenix, A. V. Rocha, Oliver Sonnentag, Ken D. Tape, Donald A. Walker
Biogeosciences, Volume 15, Issue 17

Abstract. Soils in Arctic and boreal ecosystems store twice as much carbon as the atmosphere, a portion of which may be released as high-latitude soils warm. Some of the uncertainty in the timing and magnitude of the permafrost–climate feedback stems from complex interactions between ecosystem properties and soil thermal dynamics. Terrestrial ecosystems fundamentally regulate the response of permafrost to climate change by influencing surface energy partitioning and the thermal properties of soil itself. Here we review how Arctic and boreal ecosystem processes influence thermal dynamics in permafrost soil and how these linkages may evolve in response to climate change. While many of the ecosystem characteristics and processes affecting soil thermal dynamics have been examined individually (e.g., vegetation, soil moisture, and soil structure), interactions among these processes are less understood. Changes in ecosystem type and vegetation characteristics will alter spatial patterns of interactions between climate and permafrost. In addition to shrub expansion, other vegetation responses to changes in climate and rapidly changing disturbance regimes will affect ecosystem surface energy partitioning in ways that are important for permafrost. Lastly, changes in vegetation and ecosystem distribution will lead to regional and global biophysical and biogeochemical climate feedbacks that may compound or offset local impacts on permafrost soils. Consequently, accurate prediction of the permafrost carbon climate feedback will require detailed understanding of changes in terrestrial ecosystem distribution and function, which depend on the net effects of multiple feedback processes operating across scales in space and time.