2024
Deltas are hydrologically dynamic landscapes where river floodwaters create a mosaic of productive ecosystems that provide important services. The flood regime, however, is vulnerable to upstream anthropogenic activities, climate change and geomorphic processes. Deciphering the roles of multiple potential stressors on flood regime change is critical for developing appropriate adaptive and mitigative strategies but requires knowledge of hydrological variability at broader scales of space and time than is typically available from instrumental and observational records. At the globally recognized Peace-Athabasca Delta (Canada), the timing, magnitude and causes of reduced flooding and drawdown of perched basin water levels remain an intense focus of investigation. Here we employ novel 'paleofloodscapes', generated from geospatial interpolation of Bayesian mixing model fingerprinting of sediment elemental concentrations, to quantify variation in the delta's flood regime during the past ~140 years. Results reveal that flooding of the delta began to decline several decades before hydroelectric regulation of Peace River flow, not coincident with it, and the influence of floodwaters from the unregulated Athabasca River has declined more than the regulated Peace River. A key discovery is that widespread flooding of perched basins occurs when ice-jam events on the river(s) coincide with a relatively high water-plane in the delta's open-drainage network. Without knowledge of open-drainage water levels, inferred change to the flood regime of perched basins may be inaccurate when derived solely from analyses of Peace River hydrometric data and climatic records. The paleofloodscapes illustrate that rising sediment delivery to the site of a proposed weir, caused by a natural river avulsion in 1982, may undermine the weir's intended purpose. The most recent paleofloodscape, developed from lake surface sediment sampling shortly after widespread flooding, demonstrates the value of the approach as a landscape hydrological monitoring tool, and is readily transferrable to other floodplains to track flood regime change.
2023
DOI
bib
abs
Paleolimnological evaluation of metal(loid) enrichment from oil sands and gold mining operations in northwestern Canada
Mitchell L. Kay,
Izabela Jasiak,
Wynona H. Klemt,
Johan A. Wiklund,
Jelle A. Faber,
Lauren A. MacDonald,
James V. Telford,
Cory A. M. Savage,
Colin A. Cooke,
Brent B. Wolfe,
Roland I. Hall,
Mitchell L. Kay,
Izabela Jasiak,
Wynona H. Klemt,
Johan A. Wiklund,
Jelle A. Faber,
Lauren A. MacDonald,
James V. Telford,
Cory A. M. Savage,
Colin A. Cooke,
Brent B. Wolfe,
Roland I. Hall
Environmental Research, Volume 216
Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate ‘severe’ enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and ‘severe’ (near-field; ≤ 40 km) to ‘considerable’ (far-field; 40–80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.
DOI
bib
abs
Paleolimnological evaluation of metal(loid) enrichment from oil sands and gold mining operations in northwestern Canada
Mitchell L. Kay,
Izabela Jasiak,
Wynona H. Klemt,
Johan A. Wiklund,
Jelle A. Faber,
Lauren A. MacDonald,
James V. Telford,
Cory A. M. Savage,
Colin A. Cooke,
Brent B. Wolfe,
Roland I. Hall,
Mitchell L. Kay,
Izabela Jasiak,
Wynona H. Klemt,
Johan A. Wiklund,
Jelle A. Faber,
Lauren A. MacDonald,
James V. Telford,
Cory A. M. Savage,
Colin A. Cooke,
Brent B. Wolfe,
Roland I. Hall
Environmental Research, Volume 216
Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate ‘severe’ enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and ‘severe’ (near-field; ≤ 40 km) to ‘considerable’ (far-field; 40–80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.
Abstract. Thermokarst lake water balances are becoming increasingly vulnerable to change in the Arctic as air temperature increases and precipitation patterns shift. In the tundra uplands east of the Mackenzie Delta in the Northwest Territories, Canada, previous research has found that lakes responded non-uniformly to changes in precipitation, suggesting that lake and watershed properties moderate the response of lakes to climate change. To investigate how lake and watershed properties and meteoro5 logical conditions influence the water balance of thermokarst lakes in this region, we sampled 25 lakes for isotope analysis five times in 2018, beginning before snowmelt on May 1 and ending on September 3. Water isotope data were used to calculate the ratio of evaporation-to-inflow (E/I) and the average isotope composition of lake source water (δI). We identified four distinct water balance phases as lakes responded to seasonal shifts in meteorological conditions and hydrological processes. During the freshet phase from May 1 to June 15, the median E/I ratio of lakes decreased from 0.20 to 0.13 in response to freshet runoff 10 and limited evaporation due to lake ice presence that persisted for the duration of this phase. During the following warm, dry, and ice-free period from June 15 to July 26, designated the evaporation phase, the median E/I ratio increased to 0.19. During the brief soil wetting phase, E/I ratios did not respond to rainfall between July 26 and August 2, likely because watershed soils absorbed most of the precipitation which resulted in minimal runoff to lakes. The median E/I ratio decreased to 0.11 after an unseasonably cool and rainy August, identified as the recharge phase. Throughout the sampling period, δI remained relatively 15 stable and most lakes contained a greater amount of rainfall-sourced water than snow-sourced water, even after the freshet phase due to snowmelt bypass. The range of average E/I ratios we observed at lakes (0.00–0.43) was relatively narrow and low compared to thermokarst lakes in other regions, likely owing to the large watershed area to lake area (WA/LA), efficient preferential flow pathways for runoff, and a shorter ice-free season. WA/LA strongly predicted average lake E/I ratio (R2 = 0.74), as lakes with smaller WA/LA tended to have higher E/I ratios because they received relatively less inflow. We used this 20 relationship to predict the average E/I ratio of 7340 lakes in the region, finding that lakes are not vulnerable to desiccation in this region, given that all predicted average E/I values were <0.33. If future permafrost thaw and warming cause less runoff to flow into lakes, we expect that lakes with smaller WA/LA will be more influenced by increasing evaporation, while lakes with larger WA/LA will be more resistant to lake-level drawdown. However under wetter conditions, lakes with larger WA/LA will likely experience greater increases in lake level and could be more susceptible to rapid drainage as a result.
Abstract. Thermokarst lake water balances are becoming increasingly vulnerable to change in the Arctic as air temperature increases and precipitation patterns shift. In the tundra uplands east of the Mackenzie Delta in the Northwest Territories, Canada, previous research has found that lakes responded non-uniformly to changes in precipitation, suggesting that lake and watershed properties moderate the response of lakes to climate change. To investigate how lake and watershed properties and meteoro5 logical conditions influence the water balance of thermokarst lakes in this region, we sampled 25 lakes for isotope analysis five times in 2018, beginning before snowmelt on May 1 and ending on September 3. Water isotope data were used to calculate the ratio of evaporation-to-inflow (E/I) and the average isotope composition of lake source water (δI). We identified four distinct water balance phases as lakes responded to seasonal shifts in meteorological conditions and hydrological processes. During the freshet phase from May 1 to June 15, the median E/I ratio of lakes decreased from 0.20 to 0.13 in response to freshet runoff 10 and limited evaporation due to lake ice presence that persisted for the duration of this phase. During the following warm, dry, and ice-free period from June 15 to July 26, designated the evaporation phase, the median E/I ratio increased to 0.19. During the brief soil wetting phase, E/I ratios did not respond to rainfall between July 26 and August 2, likely because watershed soils absorbed most of the precipitation which resulted in minimal runoff to lakes. The median E/I ratio decreased to 0.11 after an unseasonably cool and rainy August, identified as the recharge phase. Throughout the sampling period, δI remained relatively 15 stable and most lakes contained a greater amount of rainfall-sourced water than snow-sourced water, even after the freshet phase due to snowmelt bypass. The range of average E/I ratios we observed at lakes (0.00–0.43) was relatively narrow and low compared to thermokarst lakes in other regions, likely owing to the large watershed area to lake area (WA/LA), efficient preferential flow pathways for runoff, and a shorter ice-free season. WA/LA strongly predicted average lake E/I ratio (R2 = 0.74), as lakes with smaller WA/LA tended to have higher E/I ratios because they received relatively less inflow. We used this 20 relationship to predict the average E/I ratio of 7340 lakes in the region, finding that lakes are not vulnerable to desiccation in this region, given that all predicted average E/I values were <0.33. If future permafrost thaw and warming cause less runoff to flow into lakes, we expect that lakes with smaller WA/LA will be more influenced by increasing evaporation, while lakes with larger WA/LA will be more resistant to lake-level drawdown. However under wetter conditions, lakes with larger WA/LA will likely experience greater increases in lake level and could be more susceptible to rapid drainage as a result.
DOI
bib
abs
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox,
Brent B. Wolfe,
Philip Marsh,
Evan J. Wilcox,
Brent B. Wolfe,
Philip Marsh
Hydrology and Earth System Sciences, Volume 27, Issue 11
Abstract. Thermokarst lake water balances are becoming increasingly vulnerable to change in the Arctic as air temperature increases and precipitation patterns shift. In the tundra uplands east of the Mackenzie Delta in the Northwest Territories, Canada, previous research has found that lakes responded non-uniformly to year-to-year changes in precipitation, suggesting that lake and watershed properties mediate the response of lakes to climate change. To investigate how lake and watershed properties and meteorological conditions influence the water balance of thermokarst lakes in this region, we sampled 25 lakes for isotope analysis five times in 2018, beginning before snowmelt on 1 May and sampling throughout the remainder of the ice-free season. Water isotope data were used to calculate the average isotope composition of lake source water (δI) and the ratio of evaporation to inflow (E/I). We identified four distinct water balance phases as lakes responded to seasonal shifts in meteorological conditions and hydrological processes. During the freshet phase from 1 May to 15 June, the median E/I ratio of lakes decreased from 0.20 to 0.13 in response to freshet runoff and limited evaporation due to lake ice presence that persisted for the duration of this phase. During the following warm, dry, and ice-free period from 15 June to 26 July, designated the evaporation phase, the median E/I ratio increased to 0.19. During the brief soil wetting phase, E/I ratios did not respond to rainfall between 26 July and 2 August, likely because watershed soils absorbed most of the precipitation which resulted in minimal runoff to lakes. The median E/I ratio decreased to 0.11 after a cool and rainy August, identified as the recharge phase. Throughout the sampling period, δI remained relatively stable and most lakes contained a greater amount of rainfall-sourced water than snow-sourced water, even after the freshet phase, due to snowmelt bypass. The range of average E/I ratios that we observed at lakes (0.00–0.43) was relatively narrow and low compared with thermokarst lakes in other regions, likely owing to the large ratio of watershed area to lake area (WA/LA), efficient preferential flow pathways for runoff, and a shorter ice-free season. Lakes with smaller WA/LA tended to have higher E/I ratios (R2 = 0.74). An empirical relationship between WA/LA and E/I was derived and used to predict the average E/I ratio of 7340 lakes in the region, which identified that these lakes are not vulnerable to desiccation, given that E/I ratios were < 0.33. If future permafrost thaw and warming cause less runoff to flow into lakes, we expect that lakes with a smaller WA/LA will be more influenced by increasing evaporation, while lakes with a larger WA/LA will be more resistant to lake-level drawdown. However under wetter conditions, lakes with a larger WA/LA will likely experience a greater increases in lake level and could be more susceptible to rapid drainage.
DOI
bib
abs
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox,
Brent B. Wolfe,
Philip Marsh,
Evan J. Wilcox,
Brent B. Wolfe,
Philip Marsh
Hydrology and Earth System Sciences, Volume 27, Issue 11
Abstract. Thermokarst lake water balances are becoming increasingly vulnerable to change in the Arctic as air temperature increases and precipitation patterns shift. In the tundra uplands east of the Mackenzie Delta in the Northwest Territories, Canada, previous research has found that lakes responded non-uniformly to year-to-year changes in precipitation, suggesting that lake and watershed properties mediate the response of lakes to climate change. To investigate how lake and watershed properties and meteorological conditions influence the water balance of thermokarst lakes in this region, we sampled 25 lakes for isotope analysis five times in 2018, beginning before snowmelt on 1 May and sampling throughout the remainder of the ice-free season. Water isotope data were used to calculate the average isotope composition of lake source water (δI) and the ratio of evaporation to inflow (E/I). We identified four distinct water balance phases as lakes responded to seasonal shifts in meteorological conditions and hydrological processes. During the freshet phase from 1 May to 15 June, the median E/I ratio of lakes decreased from 0.20 to 0.13 in response to freshet runoff and limited evaporation due to lake ice presence that persisted for the duration of this phase. During the following warm, dry, and ice-free period from 15 June to 26 July, designated the evaporation phase, the median E/I ratio increased to 0.19. During the brief soil wetting phase, E/I ratios did not respond to rainfall between 26 July and 2 August, likely because watershed soils absorbed most of the precipitation which resulted in minimal runoff to lakes. The median E/I ratio decreased to 0.11 after a cool and rainy August, identified as the recharge phase. Throughout the sampling period, δI remained relatively stable and most lakes contained a greater amount of rainfall-sourced water than snow-sourced water, even after the freshet phase, due to snowmelt bypass. The range of average E/I ratios that we observed at lakes (0.00–0.43) was relatively narrow and low compared with thermokarst lakes in other regions, likely owing to the large ratio of watershed area to lake area (WA/LA), efficient preferential flow pathways for runoff, and a shorter ice-free season. Lakes with smaller WA/LA tended to have higher E/I ratios (R2 = 0.74). An empirical relationship between WA/LA and E/I was derived and used to predict the average E/I ratio of 7340 lakes in the region, which identified that these lakes are not vulnerable to desiccation, given that E/I ratios were < 0.33. If future permafrost thaw and warming cause less runoff to flow into lakes, we expect that lakes with a smaller WA/LA will be more influenced by increasing evaporation, while lakes with a larger WA/LA will be more resistant to lake-level drawdown. However under wetter conditions, lakes with a larger WA/LA will likely experience a greater increases in lake level and could be more susceptible to rapid drainage.
2022
DOI
bib
abs
Assessment of mercury enrichment in lake sediment records from Alberta Oil Sands development via fluvial and atmospheric pathways
Mitchell L. Kay,
Johan A. Wiklund,
Xiaoyu Sun,
Cory A. M. Savage,
Jennifer Adams,
Lauren A. MacDonald,
Wynona H. Klemt,
Kathleen C. Brown,
Roland I. Hall,
Brent B. Wolfe
Frontiers in Environmental Science, Volume 10
Exploitation of bitumen-rich deposits in the Alberta Oil Sands Region (AOSR) by large-scale mining and processing activities has generated widespread concern about the potential for dispersal of harmful contaminants to aquatic ecosystems via fluvial and atmospheric pathways. The release of mercury has received attention because it is a potent neurotoxin for wildlife and humans. However, knowledge of baseline mercury concentration prior to disturbance is required to evaluate the extent to which oil sands development has contributed mercury to aquatic ecosystems. Here, we use stratigraphic analysis of total mercury concentration ([THg]) in radiometrically dated sediment cores from nine floodplain lakes in the AOSR and downstream Peace-Athabasca Delta (PAD) and two upland lakes in the PAD region to establish pre-1900 baseline [THg] and evaluate if [THg] has become enriched via fluvial and atmospheric pathways since oil sands mining and processing began in 1967. Concentrations of THg in sediment cores from the study lakes range from 0.022–0.096 mg/kg (dry wt.) and are below the Canadian interim sediment quality guidelines for freshwater (0.17 mg/kg). Results demonstrate no enrichment of [THg] above pre-1900 baseline via fluvial pathways at floodplain lakes in the AOSR or PAD. Enrichment of [THg] was detected via atmospheric pathways at upland lakes in the PAD region, but this occurred prior to oil sands development and aligns with long-range transport of emissions from coal combustion and other anthropogenic sources across the northern hemisphere recognized in many other lake sediment records. The inventory of anthropogenic [THg] in the upland lakes in the AOSR is less than at the Experimental Lakes Area of northwestern Ontario (Canada), widely regarded as a “pristine” area. The absence of enrichment of [THg] in lake sediment via fluvial pathways is a critical finding for stakeholders, and we recommend that monitoring at the floodplain lakes be used to inform stewardship as oil sands operators prepare to discharge treated oil sands process waters directly into the Athabasca River upstream of the PAD.
Abstract. Snow represents the largest potential source of water for thermokarst lakes, but the runoff generated by snowmelt (freshet) can flow beneath lake ice and via the outlet without mixing with and replacing pre-snowmelt lake water. Although this phenomenon, called “snowmelt bypass”, is common in ice-covered lakes, it is unknown which lake and watershed properties cause variation in snowmelt bypass among lakes. Understanding the variability of snowmelt bypass is important because the amount of freshet that is mixed into a lake affects the hydrological and biogeochemical properties of the lake. To explore lake and watershed attributes that influence snowmelt bypass, we sampled 17 open-drainage thermokarst lakes for isotope analysis before and after snowmelt. Isotope data were used to estimate the amount of lake water replaced by freshet and to observe how the water sources of lakes changed in response to the freshet. Among the lakes, a median of 25.2 % of lake water was replaced by freshet, with values ranging widely from 5.2 % to 52.8 %. For every metre that lake depth increased, the portion of lake water replaced by freshet decreased by an average of 13 %, regardless of the size of the lake's watershed. The thickness of the freshet layer was not proportional to maximum lake depth, so that a relatively larger portion of pre-snowmelt lake water remained isolated in deeper lakes. We expect that a similar relationship between increasing lake depth and greater snowmelt bypass could be present at all ice-covered open-drainage lakes that are partially mixed during the freshet. The water source of freshet that was mixed into lakes was not exclusively snowmelt but a combination of snowmelt mixed with rain-sourced water that was released as the soil thawed after snowmelt. As climate warming increases rainfall and shrubification causes earlier snowmelt timing relative to lake ice melt, snowmelt bypass may become more prevalent, with the water remaining in thermokarst lakes post-freshet becoming increasingly rainfall sourced. However, if climate change causes lake levels to fall below the outlet level (i.e., lakes become closed-drainage), more freshet may be retained by thermokarst lakes as snowmelt bypass will not be able to occur until lakes reach their outlet level.
2021
DOI
bib
abs
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud,
Krysha A. Dukacz,
Gopal Chandra Saha,
Amber Peterson,
L. Moradi,
Stephen O'Hearn,
Erin Clary,
Juliane Mai,
Michael Steeleworthy,
Jason J. Venkiteswaran,
Homa Kheyrollah Pour,
Brent B. Wolfe,
Sean K. Carey,
John W. Pomeroy,
C. M. DeBeer,
J. M. Waddington,
Philippe Van Cappellen,
Jimmy Lin,
Bhaleka Persaud,
Krysha A. Dukacz,
Gopal Chandra Saha,
Amber Peterson,
L. Moradi,
Stephen O'Hearn,
Erin Clary,
Juliane Mai,
Michael Steeleworthy,
Jason J. Venkiteswaran,
Homa Kheyrollah Pour,
Brent B. Wolfe,
Sean K. Carey,
John W. Pomeroy,
C. M. DeBeer,
J. M. Waddington,
Philippe Van Cappellen,
Jimmy Lin
Hydrological Processes, Volume 35, Issue 11
Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.
DOI
bib
abs
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud,
Krysha A. Dukacz,
Gopal Chandra Saha,
Amber Peterson,
L. Moradi,
Stephen O'Hearn,
Erin Clary,
Juliane Mai,
Michael Steeleworthy,
Jason J. Venkiteswaran,
Homa Kheyrollah Pour,
Brent B. Wolfe,
Sean K. Carey,
John W. Pomeroy,
C. M. DeBeer,
J. M. Waddington,
Philippe Van Cappellen,
Jimmy Lin,
Bhaleka Persaud,
Krysha A. Dukacz,
Gopal Chandra Saha,
Amber Peterson,
L. Moradi,
Stephen O'Hearn,
Erin Clary,
Juliane Mai,
Michael Steeleworthy,
Jason J. Venkiteswaran,
Homa Kheyrollah Pour,
Brent B. Wolfe,
Sean K. Carey,
John W. Pomeroy,
C. M. DeBeer,
J. M. Waddington,
Philippe Van Cappellen,
Jimmy Lin
Hydrological Processes, Volume 35, Issue 11
Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.
DOI
bib
abs
A new lake classification scheme for the Peace-Athabasca Delta (Canada) characterizes hydrological processes that cause lake-level variation
Laura K. Neary,
Casey R. Remmer,
Jadine Krist,
Brent B. Wolfe,
Roland I. Hall,
Laura K. Neary,
Casey R. Remmer,
Jadine Krist,
Brent B. Wolfe,
Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38
The Peace-Athabasca Delta, a Ramsar Wetland of International Importance in northeastern Alberta, is protected within Wood Buffalo National Park and contributes to its UNESCO World Heritage status yet is threatened by climate change and upstream energy projects. Recent drawdown of the delta’s abundant shallow lakes and rivers has deteriorated vital habitat for wildlife and impaired navigation routes. Here, we report continuous measurements at ~50 lakes during open-water seasons of 2018 and 2019 to improve understanding of hydrological processes causing lake-level variation. Analyses reveal four patterns of lake-level variation attributable to influential hydrological processes, which provide the basis for a new lake classification scheme: 1) ‘Drawdown’ (≥15 cm decline) by evaporation and/or outflow after ice-jam floods, 2) ‘Stable’ lake levels (<15 cm change) sustained by rainfall, 3) ‘Gradual Rise’ by inundation from the open-drainage network, and 4) ‘Rapid Rise’ by input of river floodwater. River flooding during the open-water season is an under-recognized recharge mechanism yet occurred extensively in the Athabasca sector and appears to be a common occurrence based on the Athabasca River hydrometric record. Lake-level loggers show strong ability to track shifts in hydrological processes, and can be integrated with other methods to decipher their causes and ecological consequences across water-rich landscapes. • Concerns over lake drying in the Peace-Athabasca Delta motivated this study. • Depth loggers captured lake-level responses to flooding, rainfall and evaporation. • Four patterns comprise a new classification scheme for lakes in the PAD. • Timing, magnitude and extent of open-water flooding was quantified. • Open-water season river flooding identified as an important recharge mechanism.
DOI
bib
abs
A new lake classification scheme for the Peace-Athabasca Delta (Canada) characterizes hydrological processes that cause lake-level variation
Laura K. Neary,
Casey R. Remmer,
Jadine Krist,
Brent B. Wolfe,
Roland I. Hall,
Laura K. Neary,
Casey R. Remmer,
Jadine Krist,
Brent B. Wolfe,
Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38
The Peace-Athabasca Delta, a Ramsar Wetland of International Importance in northeastern Alberta, is protected within Wood Buffalo National Park and contributes to its UNESCO World Heritage status yet is threatened by climate change and upstream energy projects. Recent drawdown of the delta’s abundant shallow lakes and rivers has deteriorated vital habitat for wildlife and impaired navigation routes. Here, we report continuous measurements at ~50 lakes during open-water seasons of 2018 and 2019 to improve understanding of hydrological processes causing lake-level variation. Analyses reveal four patterns of lake-level variation attributable to influential hydrological processes, which provide the basis for a new lake classification scheme: 1) ‘Drawdown’ (≥15 cm decline) by evaporation and/or outflow after ice-jam floods, 2) ‘Stable’ lake levels (<15 cm change) sustained by rainfall, 3) ‘Gradual Rise’ by inundation from the open-drainage network, and 4) ‘Rapid Rise’ by input of river floodwater. River flooding during the open-water season is an under-recognized recharge mechanism yet occurred extensively in the Athabasca sector and appears to be a common occurrence based on the Athabasca River hydrometric record. Lake-level loggers show strong ability to track shifts in hydrological processes, and can be integrated with other methods to decipher their causes and ecological consequences across water-rich landscapes. • Concerns over lake drying in the Peace-Athabasca Delta motivated this study. • Depth loggers captured lake-level responses to flooding, rainfall and evaporation. • Four patterns comprise a new classification scheme for lakes in the PAD. • Timing, magnitude and extent of open-water flooding was quantified. • Open-water season river flooding identified as an important recharge mechanism.
DOI
bib
abs
Application of artificial substrate samplers to assess enrichment of metals of concern by river floodwaters to lakes across the Peace-Athabasca Delta
Cory A. M. Savage,
Tanner J. Owca,
Mitchell L. Kay,
Jelle A. Faber,
Brent B. Wolfe,
Roland I. Hall,
Cory A. M. Savage,
Tanner J. Owca,
Mitchell L. Kay,
Jelle A. Faber,
Brent B. Wolfe,
Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38
Peace-Athabasca Delta (PAD), northeastern Alberta. Potential for downstream delivery of contaminants via Athabasca River floodwaters to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters. River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically active metals complicates comparisons of organic-rich biofilm-sediment mixtures to sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan. • Oil sands monitoring of lakes in the Peace-Athabasca Delta needs pre-disturbance data. • Study compares [metals] in biofilm-sediment to [metals] in pre-1920 lake sediment. • Athabasca River floodwaters not implicated as pathway for metal enrichment. • Monitoring framework contributes to Wood Buffalo National Park Action Plan.
DOI
bib
abs
Application of artificial substrate samplers to assess enrichment of metals of concern by river floodwaters to lakes across the Peace-Athabasca Delta
Cory A. M. Savage,
Tanner J. Owca,
Mitchell L. Kay,
Jelle A. Faber,
Brent B. Wolfe,
Roland I. Hall,
Cory A. M. Savage,
Tanner J. Owca,
Mitchell L. Kay,
Jelle A. Faber,
Brent B. Wolfe,
Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38
Peace-Athabasca Delta (PAD), northeastern Alberta. Potential for downstream delivery of contaminants via Athabasca River floodwaters to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters. River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically active metals complicates comparisons of organic-rich biofilm-sediment mixtures to sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan. • Oil sands monitoring of lakes in the Peace-Athabasca Delta needs pre-disturbance data. • Study compares [metals] in biofilm-sediment to [metals] in pre-1920 lake sediment. • Athabasca River floodwaters not implicated as pathway for metal enrichment. • Monitoring framework contributes to Wood Buffalo National Park Action Plan.
DOI
bib
abs
Evaluating spatiotemporal patterns of arsenic, antimony, and lead deposition from legacy gold mine emissions using lake sediment records
Izabela Jasiak,
Johan A. Wiklund,
Émilie Leclerc,
James V. Telford,
Raoul‐Marie Couture,
Jason J. Venkiteswaran,
Roland I. Hall,
Brent B. Wolfe
Applied Geochemistry, Volume 134
Gold mining operations near Yellowknife (Northwest Territories, Canada) released vast quantities of arsenic trioxide during the 1950s, which dispersed across the landscape. Contemporary measurements of arsenic concentrations in lake water and surficial sediment identify enrichment within a 30 km radius. However, paleolimnological studies have identified possible evidence of mining influence during the 1950s at a lake beyond this distance, suggesting a more expansive legacy footprint may exist. Here, we analyze spatiotemporal patterns of arsenic, antimony, and lead deposition from sediment cores at lakes located 10–40 km (near-field) and 50–80 km (far-field) from the mines along the prevailing northwesterly wind direction (NW) and 20–40 km to the northeast (NE) of the mines to improve characterization of the legacy footprint of emissions. We build upon previous findings to determine if: 1) there is evidence of mine-related pollutants beyond the well-established 30 km radius and 2) enrichment is greatest in the prevailing wind direction, as expected for aerial dispersion from a point source of emissions. Results demonstrate enrichment since the 1950s for arsenic and antimony at least as far as 80 km to the NW and 40 km to the NE, thus legacy deposition extended beyond the currently defined 30 km radius ‘zone of immediate influence’. Concentrations, enrichment factors, and total excess inventories of arsenic and antimony decline with distance from the mines and are greater along the prevailing (NW) than orthogonal (NE) wind direction. Peak concentrations in uppermost sediment strata at near-field lakes in the prevailing wind direction suggest supply of arsenic and antimony remains high from legacy stores in the catchment and lake sediment profiles >60 years after emissions were released. Such lasting influence of legacy emissions likely is not limited to mines in the Yellowknife region, and paleolimnological approaches can effectively delineate zones of past and ongoing pollution from legacy sources elsewhere. • We analyze metals in sediment cores to track dispersal of legacy mine emissions. • Enrichment of As and Sb evident beyond known 30-km radius pollution zone. • Distance from source and wind direction influenced contaminant dispersal. • Enriched surface sediments within 30 km suggest ongoing delivery of legacy metals.
2020
DOI
bib
abs
Evaluating temporal patterns of metals concentrations in floodplain lakes of the Athabasca Delta (Canada) relative to pre-industrial baselines
Mitchell L. Kay,
Johan A. Wiklund,
Casey R. Remmer,
Tanner J. Owca,
Wynona H. Klemt,
Laura K. Neary,
Kathleen C. Brown,
Erin MacDonald,
K.P.B. Thomson,
Jasmina M. Vucic,
Katherine Wesenberg,
Roland I. Hall,
Brent B. Wolfe
Science of The Total Environment, Volume 704
• Lack of pre-industrial baseline data hampers assessment of oil sands river pollution. • We analyzed metals concentrations in cores of Athabasca Delta floodplain lakes. • No enrichment was detected for metals associated with oil sands development. • Results inform decision on World Heritage status of Wood Buffalo National Park. • A framework has been established for ongoing aquatic ecosystem monitoring. Sediment quality monitoring is widely used to quantify extent of river pollution, but requires knowledge of pre-disturbance conditions in the potentially altered landscape. This has long been identified as a critical aspect to develop for addressing concerns of river pollution in the Alberta Oil Sands Region. Here, we use analyses of sediment cores from eight floodplain lakes spanning a 67 river-km transect across the Athabasca Delta to define pre-1920 (pre-industrial) baseline concentrations for vanadium and five primary pollutants. We then evaluate if sediment metals concentrations have become enriched above baseline since onset of oil sands development and other industrial activities. Results demonstrate no enrichment of metals concentrations (except zinc at one lake) and absence of consistent temporal increases above pre-industrial baselines. Thus, natural processes continue to dominate metal deposition in floodplain lakes of the Athabasca Delta -- an important finding to inform stewardship decisions. The pre-1920 metals concentrations baselines offer a useful tool for ongoing sediment monitoring in aquatic ecosystems of the Athabasca Delta.
DOI
bib
abs
Use of pre-industrial baselines to monitor anthropogenic enrichment of metals concentrations in recently deposited sediment of floodplain lakes in the Peace-Athabasca Delta (Alberta, Canada)
Tanner J. Owca,
Mitchell L. Kay,
Jelle A. Faber,
Casey R. Remmer,
Nelson A. Zabel,
Johan A. Wiklund,
Brent B. Wolfe,
Roland I. Hall
Environmental Monitoring and Assessment, Volume 192, Issue 2
Abstract Well-designed monitoring approaches are needed to assess effects of industrial development on downstream aquatic environments and guide environmental stewardship. Here, we develop and apply a monitoring approach to detect potential enrichment of metals concentrations in surficial lake sediments of the Peace-Athabasca Delta (PAD), northern Alberta, Canada. Since the ecological integrity of the PAD is strongly tied to river floodwaters that replenish lakes in the delta, and the PAD is located downstream of the Alberta oil sands, concerns have been raised over the potential transport of industry-supplied metals to the PAD via the Athabasca River. Surface sediment samples were collected in September 2017 from 61 lakes across the delta, and again in July 2018 from 20 of the same lakes that had received river floodwaters 2 months earlier, to provide snapshots of metals concentrations (Be, Cd, Cr, Cu, Ni, Pb, V, and Zn) that have recently accumulated in these lakes. To assess for anthropogenic enrichment, surficial sediment metals concentrations were normalized to aluminum and compared to pre-industrial baseline (i.e., reference) metal-aluminum linear relations for the Athabasca and Peace sectors of the PAD developed from pre-1920 measurements in lake sediment cores. Numerical analysis demonstrates no marked enrichment of these metals concentrations above pre-1920 baselines despite strong ability (> 99% power) to detect enrichment of 10%. Measurements of river sediment collected by the Regional Aquatics- and Oil Sands-Monitoring Programs (RAMP/OSM) also did not exceed pre-1920 concentrations. Thus, results presented here show no evidence of substantial oil sands-derived metals enrichment of sediment supplied by the Athabasca River to lakes in the PAD and demonstrate the usefulness of these methods as a monitoring framework.
Abstract Sustainable approaches capable of tracking status, trends and drivers of lake water balances in complex, remote landscapes are needed to inform ecosystem stewardship and water-security actions. At the Peace-Athabasca Delta (Alberta, Canada), a globally recognized freshwater floodplain landscape, concerns about water-level drawdown and multiple potential stressors have prompted need to improve knowledge of lake water balances and establish a lake monitoring program. Yet, the delta’s remoteness and dynamic nature present challenges to these goals. Here we use over 1000 measurements of water isotope composition at ∼60 lakes and 9 river sites during the spring, summer and fall of five consecutive years (2015–2019) to elucidate patterns in lake water balance over time and space, the influential roles of evaporation and river floodwaters, and relations with meteorological conditions and river water levels. Calculation of evaporation-to-inflow ratios using a coupled-isotope tracer approach, displayed via generalized additive models and geospatial ‘isoscapes’, reveal strongly varying lake water balances. Results identify distinct areas vulnerable to lake-level drawdown, given the likelihood of continued decline in ice-jam flood frequency, longer ice-free season duration and reduced snowmelt runoff. Results also demarcate areas of the delta where lakes are more resilient to factors that cause drawdown. The former defines the Peace sector, which is influenced by floodwaters from the Peace River during episodic ice-jam flood events, whereas the latter describes portions of the active floodplain environment of the Athabasca sector which receives more frequent contributions of Athabasca River floodwaters during both spring ice-jam and open-water seasons. Efficiency of water isotope tracers to capture the marked temporal and spatial heterogeneity in lake water balances during this 5 year time span, and their diagnostic responses to key hydrological processes, serves as a foundation for ongoing lake monitoring, an approach readily transferable to other remote and dynamic lake-rich landscapes.
Opposing interpretations of Lower Peace River ice-jam flood frequency data sets are at the centre of identifying causes of reduced freshwater availability in the Peace-Athabasca Delta (northern Alberta), a Ramsar Wetland of International Importance and a major contributor to Wood Buffalo National Park’s listing as a UNESCO World Heritage Site. Recently, conclusions drawn from statistical inference of traditional knowledge and historical observation sources suggested that flood frequency was accelerating during 1880–1967 and then declined coincident with hydroelectric regulation of Peace River flow since 1968 that altered the river’s hydrograph. In contrast, prior paleolimnological measurements of laminated sediments from oxbow lakes proximal to the Peace River have, along with alternate presentation of the traditional knowledge and historical observation sources, identified flood frequency was in decline for decades preceding river regulation due to climate change since the Little Ice Age. Here we revisit these data sets and, specifically, review their inherent uncertainties to assess their value and limitations. The notion of increasing versus decreasing flood frequency in the decades preceding river regulation (1880–1967) is tested using previously published paleohydrological records from perched lakes in the delta. Those records from lakes most proximal and sensitive to changes in the flow regime of the Peace River show increasing influence of lake evaporation during 1880–1967, consistent with long-term decline in flood frequency. Reconciling uncertainties of multiple lines-of-evidence and their findings should inform decisions by UNESCO on the World Heritage status of Wood Buffalo National Park and execution of the park’s federally funded Action Plan. New paleolimnological studies that have recently been launched will continue to probe the hydrological history of the Peace-Athabasca Delta to serve as a foundation for effective stewardship.
The late John Glew contributed valuable equipment to the paleolimnology community for successful collection and processing of cores of sediment from aquatic ecosystems. Unfortunately, tubes that fit his hammer-gravity corer design are no longer conveniently available for purchase and, with his sudden passing, Glew gravity and coring equipment is difficult or impossible to access. In some field-sampling situations, other commercially available equipment present limitations. Here, we provide an updated design of the Glew gravity corer which accommodates a hammer-percussion instrument and overcomes limitations we have encountered when coring lakes in remote locations from floats of a helicopter or small, inflatable watercraft. Our approach integrates the ‘best of both worlds’ provided by the Glew and commercially available Uwitec designs, using readily available components. We updated the Glew corer tube collar to be compatible with standard, commercially available 90-mm external diameter (86-mm internal diameter) PVC tubing that fits Uwitec components (e.g., Uwitec rubber ‘piston’ and ‘stoppers’; using terminology of the Uwitec catalogue), and designed a spring-loaded gasket-style plunger that achieves greater suction than the standard Glew designs. We also updated the Glew vertical sectioner to be compatible with 90-mm-diameter core tubes typically ranging from 60–120 cm long. An outcome is consolidation of the Uwitec and Glew gravity coring systems, which has allowed for interchangeability and choice among use of original and hammer-driven Glew, Uwitec, and the new hybrid ‘Uwi-Glew-ee’ gravity corer and sectioner configurations, depending on logistical constraints of fieldwork and anticipated lake sediment composition. The parts and systems are available from University of Waterloo’s Science Technical Services (https://uwaterloo.ca/science-technical-services/).
2019
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace‐Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice‐jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape‐scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice‐jam induced flooding along the Peace and Athabasca rivers. Lake‐specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace‐Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.
DOI
bib
abs
Bi-directional hydrological changes in perched basins of the Athabasca Delta (Canada) in recent decades caused by natural processes
Mitchell L. Kay,
Johan A. Wiklund,
Casey R. Remmer,
Laura K. Neary,
Kathleen C. Brown,
Abhishek Ghosh,
Erin MacDonald,
K.P.B. Thomson,
Jasmina M. Vucic,
Katherine Wesenberg,
Roland I. Hall,
Brent B. Wolfe
Environmental Research Communications, Volume 1, Issue 8
[1] Previous studies of river hydrometric records and Indigenous Knowledge holders claim that flood-induced recharge of ecologically important perched basins decreased across the Peace-Athabasca Delta after 1968 due mainly to hydroelectric regulation of Peace River flow. Natural deltaic processes and climate are acknowledged as additional, lesser contributors, but are challenging to evaluate. We use sediment records spanning ∼115 years from nine perched basins across the Athabasca Delta to test if unidirectional drying coincides with river regulation. Results show bi-directional hydrological changes since the early 1980s, not 1968, to reduced flooding in areas east of the Embarras River confluence with Cree/Mamawi creeks and increased flooding northward along the Cree/Mamawi distributary. The timing and pattern pinpoint the 1982 Embarras Breakthrough, a natural avulsion that diverted flow northward and away from the Athabasca Delta terminus, as the principal cause. The results demonstrate the need to factor natural deltaic processes into impending decisions on the delta’s UNESCO World Heritage status and implementation of a federal Action Plan to mitigate widespread drying.
2018
Climate‐driven decline in freshwater supplied by rivers draining the hydrographic apex of western North America has ramifications for downstream ecosystems and society. For the Peace‐Athabasca Delta (PAD), floods from the Peace and Athabasca rivers are critical for sustaining abundant shallow water habitat, but their frequency has been in decline for decades over much of its area. Here, we assess current hydrological and limnological status in the PAD by integrating spatial and temporal data. Analysis of water isotope compositions and water chemistry measured at numerous lakes across the delta shows that hydro‐limnological effects of the large‐scale ice‐jam flood event of 2014 failed to persist beyond the early ice‐free season of 2015. Isotope‐inferred paleohydrological records from five hydrologically representative lakes in the PAD indicate that periodic desiccation during the Little Ice Age occurred at the most elevated basin in response to locally arid climatic conditions, yet other lower elevation sites were influenced by high water level on Lake Athabasca owing to increased snowmelt‐ and glacier‐derived river discharge. In contrast, water isotope data during the past 15 yr at all five lakes consistently document the strong role of evaporation, a trend which began in the early to mid‐20th century according to sediment records and is indicative of widespread aridity unprecedented during the past 400 yr. We suggest that integration of hydrological and limnological approaches over space and time is needed to inform assessment of contemporary lake conditions in large, complex floodplain landscapes.