Brett Tendler


2020

DOI bib
Concentrations of Metals in Fishes from the Athabasca and Slave Rivers of Northern Canada
Brett Tendler, Ehimai Ohiozebau, Garry Codling, John P. Giesy, Paul D. Jones
Environmental Toxicology and Chemistry, Volume 39, Issue 11

There is growing concern about possible effects of exploitation of the Alberta Oil Sands on the ambient environment, including possible effects on populations of fishes in the Athabasca River and farther downstream in Lake Athabasca and the Slave River. In the present study, concentrations of metals in dorsal muscle tissue of 5 fish species-goldeye, northern pike, walleye, whitefish, and burbot-from the Slave, Peace, and Athabasca Rivers were quantified. A suite of 25 metals including As, Hg, Se, Tl, and V was analyzed. Most metals exhibited no significant variations in concentration among locations. Concentrations of 5 metals, As, Hg, Se, Tl, and V, revealed significant variations among locations and were of sufficient magnitude to be of interest. Concentrations of Hg did not vary significantly among locations; however, because it was detected at concentrations of concern and the use of the selected fishes was a local source of food for humans and pets, it was of interest. Concentrations of As, Se, Tl, and V in dorsal muscle of certain fishes in the farthest downstream sites on the Slave River were greater than those in the same tissues and species in the farther upstream sites on the Peace and Athabasca Rivers. This phenomenon was most prevalent with Tl and to a lesser extent with As and Se. Nevertheless, concentrations were not of concern for the health of human consumers. Although metals did not appear to be increased in fish in the Alberta Oil Sands region in the present study, further research is needed to understand the potential impacts. Environ Toxicol Chem 2020;39:2180-2195. © 2020 SETAC.

2019

DOI bib
Vanadium and thallium exhibit biodilution in a northern river food web
Timothy D. Jardine, Lorne E. Doig, Paul D. Jones, Lalita Bharadwaj, Meghan K. Carr, Brett Tendler, Karl–Erich Lindenschmidt
Chemosphere, Volume 233

Trophic transfer of contaminants dictates concentrations and potential toxic effects in top predators, yet biomagnification behaviour of many trace elements is poorly understood. We examined concentrations of vanadium and thallium, two globally-distributed and anthropogenically-enriched elements, in a food web of the Slave River, Northwest Territories, Canada. We found that tissue concentrations of both elements declined with increasing trophic position as measured by δ15N. Slopes of log [element] versus δ15N regressions were both negative, with a steeper slope for V (-0.369) compared with Tl (-0.099). These slopes correspond to declines of 94% with each step in the food chain for V and 54% with each step in the food chain for Tl. This biodilution behaviour for both elements meant that concentrations in fish were well below values considered to be of concern for the health of fish-eating consumers. Further study of these elements in food webs is needed to allow a fuller understanding of biomagnification patterns across a range of species and systems.