Brittney Glass


DOI bib
A Coupled Thermal‐Hydraulic‐Mechanical Approach to Modeling the Impact of Roadbed Frost Loading on Water Main Failure
Xiang Huang, David L. Rudolph, Brittney Glass
Water Resources Research, Volume 58, Issue 3

Subsurface pipe failures in cold regions are generally believed to be exacerbated by differential strain in shallow soils induced by seasonal freeze and thaw cycles. The transient stress–strain fields resulting from soil water phase change may influence the occurrence of local buried pipe breaks including those related to urban water mains. This work proposes that freezing-induced frost loading results in uneven stress–strain distributions along the buried water mains placing them at risk of bending, breaking, and/or leaking. A coupled thermal-hydraulic-mechanical (THM) model was developed to illustrate the interactions among moisture, temperature, and stress–strain fields within variably saturated freezing soils. Several typical cases involving highly frost-susceptible and lower frost-susceptible soils underlying roadbeds were examined. Results show that the magnitude of frost-induced compressive stress and strain changes between different frost-susceptible soils can vary significantly. Such substantial differences in stress–strain fields would increase the breakage risk of water mains buried within different types of soils. Furthermore, even water mains buried within soils with low frost-susceptibility are at risk when additional sources of soil water exist and are available to migrate to the freezing front. To reduce the risk of damage to buried pipe-like infrastructure, such as municipal water mains, from soil freezing phenomena, the selected backfill material should have fairly consistent frost susceptibility or a broad zone of transition should be considered between materials with significantly different frost susceptibility. In addition, buried pipes should be kept as far away from external sources of subsurface water as possible considering the potential for the water source to exacerbate the level of risk to the pipe.


DOI bib
Identifying groundwater discharge zones in the Central Mackenzie Valley using remotely sensed optical and thermal imagery
Brittney Glass, David L. Rudolph, Claude R. Duguay, Andrew Wicke
Canadian Journal of Earth Sciences, Volume 58, Issue 2

Landsat 4–5 Thematic Mapper, Landsat 8 Operational Land Imager, and RapidEye-3 data sets were used to identify potential groundwater discharge zones, via icings, in the Central Mackenzie Valley (CMV) of the Northwest Territories. Given that this area is undergoing active shale oil exploration and climatic changes, identification of groundwater discharge zones is of great importance both for pinpointing potential contaminant transport pathways and for characterizing the hydrologic system. Following the work of Morse and Wolfe (2015), a series of image algorithms were applied to imagery for the entire CMV and for the Bogg Creek watershed (a sub watershed of the CMV) for selected years between 2004 and 2017. Icings were statistically examined for all of the selected years to determine whether a significant difference in their spatial occurrence existed. It was concluded that there was a significant difference in the spatial distribution of icings from year to year (α = 0.05), but that there were several places where icings were recurring. During the summer of 2018, these recurrent icings, which are expected to be spring sourced, were verified using a thermal camera aboard a helicopter, as well as in situ measurements of hydraulic gradient, groundwater geochemistry, and electroconductivity. Strong agreement was found between the mapped icings and summer field data, making them ideal field monitoring locations. Furthermore, identifying these discharge points remotely is expected to have drastically reduced the field efforts that would have been required to find them in situ. This work demonstrates the value of remote sensing methods for hydrogeological applications, particularly in remote northern locations.