2021
DOI
bib
abs
Open Science: Open Data, Open Models, …and Open Publications?
Martyn P. Clark,
Charles H. Luce,
Amir AghaKouchak,
Wouter Berghuijs,
Cédric H. David,
Qingyun Duan,
Shemin Ge,
Ilja van Meerveld,
Kewei Chen,
M. B. Parlange,
S. W. Tyler
Water Resources Research, Volume 57, Issue 4
This commentary explores the challenges and opportunities associated with a possible transition of Water Resources Research to a publication model where all articles are freely available upon publication (“Gold” open access). It provides a review of the status of open access publishing models, a summary of community input, and a path forward for AGU leadership. The decision to convert to open access is framed by a mix of finances and values. On the one hand, the challenge is to define who pays, and how, and what we can do to improve the affordability of publishing. On the other hand, the challenge is to increase the extent to which science is open and accessible. The next steps for the community include an incisive analysis of the financial feasibility of different cost models, and weighing the financial burden for open access against the desire to further advance open science.
2020
DOI
bib
abs
Underlying Fundamentals of Kalman Filtering for River Network Modeling
Charlotte Emery,
Cédric H. David,
Konstantinos M. Andreadis,
M. Turmon,
J. T. Reager,
Jonathan Hobbs,
Ming Pan,
J. S. Famiglietti,
R. Edward Beighley,
Matthew Rodell
Journal of Hydrometeorology, Volume 21, Issue 3
Abstract The grand challenge of producing hydrometeorological estimates every time and everywhere has motivated the fusion of sparse observations with dense numerical models, with a particular interest on discharge in river modeling. Ensemble methods are largely preferred as they enable the estimation of error properties, but at the expense of computational load and generally with underestimations. These imperfect stochastic estimates motivate the use of correction methods, that is, error localization and inflation, although the physical justifications for their optimality are limited. The purpose of this study is to use one of the simplest forms of data assimilation when applied to river modeling and reveal the underlying mechanisms impacting its performance. Our framework based on assimilating daily averaged in situ discharge measurements to correct daily averaged runoff was tested over a 4-yr case study of two rivers in Texas. Results show that under optimal conditions of inflation and localization, discharge simulations are consistently improved such that the mean values of Nash–Sutcliffe efficiency are enhanced from −11.32 to 0.55 at observed gauges and from −12.24 to −1.10 at validation gauges. Yet, parameters controlling the inflation and the localization have a large impact on the performance. Further investigations of these sensitivities showed that optimal inflation occurs when compensating exactly for discrepancies in the magnitude of errors while optimal localization matches the distance traveled during one assimilation window. These results may be applicable to more advanced data assimilation methods as well as for larger applications motivated by upcoming river-observing satellite missions, such as NASA’s Surface Water and Ocean Topography mission.
2019
The transport of freshwater from continents to oceans through rivers has traditionally been estimated by routing runoff from land surface models within river models to obtain discharge. This paradigm imposes that errors are transferred from runoff to discharge, yet the analytical propagation of uncertainty from runoff to discharge has never been derived. Here we apply statistics to the continuity equation within a river network to derive two equations that propagate the mean and variance/covariance of runoff errors independently. We validate these equations in a case study of the rivers in the western United States and, for the first time, invert observed discharge errors for spatially distributed runoff errors. Our results suggest that the largest discharge error source is the joint variability of runoff errors across space, not the mean or amplitude of individual errors. Our findings significantly advance the science of error quantification in model‐based estimates of river discharge.
DOI
bib
abs
A High-Resolution Data Assimilation Framework for Snow Water Equivalent Estimation across the Western United States and Validation with the Airborne Snow Observatory
C. M. Oaida,
J. T. Reager,
Konstantinos M. Andreadis,
Cédric H. David,
S. Levoe,
T. H. Painter,
K. J. Bormann,
A. Trangsrud,
Manuela Girotto,
J. S. Famiglietti
Journal of Hydrometeorology, Volume 20, Issue 3
Abstract Numerical simulations of snow water equivalent (SWE) in mountain systems can be biased, and few SWE observations have existed over large domains. New approaches for measuring SWE, like NASA’s ultra-high-resolution Airborne Snow Observatory (ASO), offer an opportunity to improve model estimates by providing a high-quality validation target. In this study, a computationally efficient snow data assimilation (DA) approach over the western United States at 1.75-km spatial resolution for water years (WYs) 2001–17 is presented. A local ensemble transform Kalman filter implemented as a batch smoother is used with the VIC hydrology model to assimilate the remotely sensed daily MODIS fractional snow-covered area (SCA). Validation of the high-resolution SWE estimates is done against ASO SWE data in the Tuolumne basin (California), Uncompahgre basin (Colorado), and Olympic Peninsula (Washington). Results indicate good performance in dry years and during melt, with DA reducing Tuolumne basin-average SWE percent differences from −68%, −92%, and −84% in open loop to 0.6%, 25%, and 3% after DA for WYs 2013–15, respectively, for ASO dates and spatial extent. DA also improved SWE percent difference over the Uncompahgre basin (−84% open loop, −65% DA) and Olympic Peninsula (26% open loop, −0.2% DA). However, in anomalously wet years DA underestimates SWE, likely due to an inadequate snow depletion curve parameterization. Despite potential shortcomings due to VIC model setup (e.g., water balance mode) or parameterization (snow depletion curve), the DA framework implemented in this study shows promise in overcoming some of these limitations and improving estimated SWE, in particular during drier years or at higher elevations, when most in situ observations cannot capture high-elevation snowpack due to lack of stations there.
DOI
bib
abs
Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth
D. Stampoulis,
J. T. Reager,
Cédric H. David,
Konstantinos M. Andreadis,
J. S. Famiglietti,
Tom G. Farr,
A. Trangsrud,
Ralph R. Basilio,
John L. Sabo,
G. B. Osterman,
P. Lundgren,
Zhen Liu
Advances in Water Resources, Volume 128
Abstract Despite numerous advances in continental-scale hydrologic modeling and improvements in global Land Surface Models, an accurate representation of regional water table depth (WTD) remains a challenge. Data assimilation of observations from the Gravity Recovery and Climate Experiment (GRACE) mission leads to improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of lumped water storage. However, the usually shallow groundwater compartment of many models presents a problem with GRACE assimilation techniques, as these satellite observations also represent changes in deeper soils and aquifers. To improve the accuracy of modeled groundwater estimates and allow the representation of WTD at finer spatial scales, we implemented a simple, yet novel approach to integrate GRACE data, by augmenting the Variable Infiltration Capacity (VIC) hydrologic model. First, the subsurface model structural representation was modified by incorporating an additional (fourth) soil layer of varying depth (up to 1000 m) in VIC as the bottom ‘groundwater’ layer. This addition allows the model to reproduce water storage variability not only in shallow soils but also in deeper groundwater, in order to allow integration of the full GRACE-observed variability. Second, a Direct Insertion scheme was developed that integrates the high temporal (daily) and spatial (∼6.94 km) resolution model outputs to match the GRACE resolution, performs the integration, and then disaggregates the updated model state after the assimilation step. Simulations were performed with and without Direct Insertion over the three largest river basins in California and including the Central Valley, in order to test the augmented model's ability to capture seasonal and inter-annual trends in the water table. This is the first-ever fusion of GRACE total water storage change observations with hydrologic simulations aiming at the determination of water table depth dynamics, at spatial scales potentially useful for local water management.
The flow of fresh groundwater to the ocean through the coast (fresh submarine groundwater discharge or fresh SGD) plays an important role in global biogeochemical cycles and coastal water quality. In addition to delivering dissolved elements from land to sea, fresh SGD forms a natural barrier against salinization of coastal aquifers. Here we estimate groundwater discharge rates through the near‐global coast (60°N to 60°S) at high resolution using a water budget approach. We find that tropical coasts export more than 56% of all fresh SGD, while midlatitude arid regions export only 10%. Fresh SGD rates from tectonically active margins (coastlines along tectonic plate boundaries) are also significantly greater than passive margins, where most field studies have been focused. Active margins combine rapid uplift and weathering with high rates of fresh SGD and may therefore host exceptionally large groundwater‐borne solute fluxes to the coast.
2018
Earth‐orbiting satellites provide valuable observations of upstream river conditions worldwide. These observations can be used in real‐time applications like early flood warning systems and reservoir operations, provided they are made available to users with sufficient lead time. Yet the temporal requirements for access to satellite‐based river data remain uncharacterized for time‐sensitive applications. Here we present a global approximation of flow wave travel time to assess the utility of existing and future low‐latency/near‐real‐time satellite products, with an emphasis on the forthcoming SWOT satellite mission. We apply a kinematic wave model to a global hydrography data set and find that global flow waves traveling at their maximum speed take a median travel time of 6, 4, and 3 days to reach their basin terminus, the next downstream city, and the next downstream dam, respectively. Our findings suggest that a recently proposed ≤2‐day data latency for a low‐latency SWOT product is potentially useful for real‐time river applications.