2024
Abstract Rare precipitation events with return periods of multiple decades to hundreds of years are particularly damaging to natural and societal systems. Projections of such rare, damaging precipitation events in the future climate are, however, subject to large inter‐model variations. We show that a substantial portion of these differences can be ascribed to the projected warming uncertainty, and can be robustly reduced by using the warming observed during recent decades as an observational constraint, implemented either by directly constraining the projections with the observed warming or by conditioning them on constrained warming projections, as verified by extensive model‐based cross‐validation. The temperature constraint reduces >40% of the warming‐induced uncertainty in the projected intensification of future rare daily precipitation events for a climate that is 2°C warmer than preindustrial across most regions. This uncertainty reduction together with validation of the reliability of the projections should permit more confident adaptation planning at regional levels.
2021
DOI
bib
abs
On the Optimal Design of Field Significance Tests for Changes in Climate Extremes
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue,
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue
Geophysical Research Letters, Volume 48, Issue 9
Field significance tests have been widely used to detect climate change. In most cases, a local test is used to identify significant changes at individual locations, which is then followed by a field significance test that considers the number of locations in a region with locally significant changes. The choice of local test can affect the result, potentially leading to conflicting assessments of the impact of climate change on a region. We demonstrate that when considering changes in the annual extremes of daily precipitation, the simple Mann‐Kendall trend test is preferred as the local test over more complex likelihood ratio tests that compare the fits of stationary and nonstationary generalized extreme value distributions. This lesson allows us to report, with enhanced confidence, that the intensification of annual extremes of daily precipitation in China since 1961 became field significant much earlier than previously reported.
DOI
bib
abs
On the Optimal Design of Field Significance Tests for Changes in Climate Extremes
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue,
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue
Geophysical Research Letters, Volume 48, Issue 9
Field significance tests have been widely used to detect climate change. In most cases, a local test is used to identify significant changes at individual locations, which is then followed by a field significance test that considers the number of locations in a region with locally significant changes. The choice of local test can affect the result, potentially leading to conflicting assessments of the impact of climate change on a region. We demonstrate that when considering changes in the annual extremes of daily precipitation, the simple Mann‐Kendall trend test is preferred as the local test over more complex likelihood ratio tests that compare the fits of stationary and nonstationary generalized extreme value distributions. This lesson allows us to report, with enhanced confidence, that the intensification of annual extremes of daily precipitation in China since 1961 became field significant much earlier than previously reported.
Abstract This study presents an analysis of daily temperature and precipitation extremes with return periods ranging from 2 to 50 years in phase 6 of the Coupled Model Intercomparison Project (CMIP6) multimodel ensemble of simulations. Judged by similarity with reanalyses, the new-generation models simulate the present-day temperature and precipitation extremes reasonably well. In line with previous CMIP simulations, the new simulations continue to project a large-scale picture of more frequent and more intense hot temperature extremes and precipitation extremes and vanishing cold extremes under continued global warming. Changes in temperature extremes outpace changes in global annual mean surface air temperature (GSAT) over most landmasses, while changes in precipitation extremes follow changes in GSAT globally at roughly the Clausius–Clapeyron rate of ~7% °C −1 . Changes in temperature and precipitation extremes normalized with respect to GSAT do not depend strongly on the choice of forcing scenario or model climate sensitivity, and do not vary strongly over time, but with notable regional variations. Over the majority of land regions, the projected intensity increases and relative frequency increases tend to be larger for more extreme hot temperature and precipitation events than for weaker events. To obtain robust estimates of these changes at local scales, large initial-condition ensemble simulations are needed. Appropriate spatial pooling of data from neighboring grid cells within individual simulations can, to some extent, reduce the needed ensemble size.
2020
Abstract Performance in simulating atmospheric rivers (ARs) over western North America based on AR frequency and landfall latitude is evaluated for 10 models from phase 5 of the Coupled Model Intercomparison Project among which the CanESM2 model performs well. ARs are classified into southern, northern, and middle types using self-organizing maps in the ERA-Interim reanalysis and CanESM2. The southern type is associated with the development and eastward movement of anomalous lower pressure over the subtropical eastern Pacific, while the northern type is linked with the eastward movement of anomalous cyclonic circulation stimulated by warm sea surface temperatures over the subtropical western Pacific. The middle type is connected with the negative phase of North Pacific Oscillation–west Pacific teleconnection pattern. CanESM2 is further used to investigate projected AR changes at the end of the twenty-first century under the representative concentration pathway 8.5 scenario. AR definitions usually reference fixed integrated water vapor or integrated water vapor transport thresholds. AR changes under such definitions reflect both thermodynamic and dynamic influences. We therefore also use a modified AR definition that isolates change from dynamic influences only. The total AR frequency doubles compared to the historical period, with the middle AR type contributing the largest increases along the coasts of Vancouver Island and California. Atmospheric circulation (dynamic) changes decrease northern AR type frequency while increasing middle AR type frequency, indicating that future changes of circulation patterns modify the direct effect of warming on AR frequency, which would increase ARs (relative to fixed thresholds) almost everywhere along the North American coastline.
2019
Global warming is expected to increase the amount of atmospheric moisture, resulting in heavier extreme precipitation. Various studies have used the historical relationship between extreme precipitation and temperature (temperature scaling) to provide guidance about precipitation extremes in a future warmer climate. Here we assess how much information is required to robustly identify temperature scaling relationships, and whether these relationships are equally effective at different times in the future in estimating precipitation extremes everywhere across North America. Using a large ensemble of 35 North American regional climate simulations of the period 1951–2100, we show that individual climate simulations of length comparable to that of typical instrumental records are unable to constrain temperature scaling relationships well enough to reliably estimate future extremes of local precipitation accumulation for hourly to daily durations in the model's climate. Hence, temperature scaling relationships estimated from the limited historical observations are unlikely to be able to provide reliable guidance for future adaptation planning at local spatial scales. In contrast, well‐constrained temperature scaling relations based on multiple regional climate simulations do provide a feasible basis for accurately projecting precipitation extremes of hourly to daily durations in different future periods over more than 90% of the North American land area.
DOI
bib
abs
Larger Increases in More Extreme Local Precipitation Events as Climate Warms
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Gang Chen,
Jian Lu,
Guilong Li,
Jesse Norris,
Yaheng Tan,
Ying Sun,
Min Liu
Geophysical Research Letters, Volume 46, Issue 12
Climate models project that extreme precipitation events will intensify in proportion to their intensity during the 21st century at large spatial scales. The identification of the causes of this phenomenon nevertheless remains tenuous. Using a large ensemble of North American regional climate simulations, we show that the more rapid intensification of more extreme events also appears as a robust feature at finer regional scales. The larger increases in more extreme events than in less extreme events are found to be primarily due to atmospheric circulation changes. Thermodynamically induced changes have relatively uniform effects across extreme events and regions. In contrast, circulation changes weaken moderate events over western interior regions of North America and enhance them elsewhere. The weakening effect decreases and even reverses for more extreme events, whereas there is further intensification over other parts of North America, creating an “intense gets intenser” pattern over most of the continent.
2017
Wet bulb Globe Temperature (WBGT) accounts for the effect of environmental temperature and humidity on thermal comfort, and can be directly related to the ability of the human body to dissipate excess metabolic heat and thus avoid heat stress. Using WBGT as a measure of environmental conditions conducive to heat stress, we show that anthropogenic influence has very substantially increased the likelihood of extreme high summer mean WBGT in northern hemispheric land areas relative to the climate that would have prevailed in the absence of anthropogenic forcing. We estimate that the likelihood of summer mean WGBT exceeding the observed historical record value has increased by a factor of at least 70 at regional scales due to anthropogenic influence on the climate. We further estimate that, in most northern hemispheric regions, these changes in the likelihood of extreme summer mean WBGT are roughly an order of magnitude larger than the corresponding changes in the likelihood of extreme hot summers as simply measured by surface air temperature. Projections of future summer mean WBGT under the RCP8.5 emissions scenario that are constrained by observations indicate that by 2030s at least 50% of the summers will have mean WBGT higher than the observed historical record value in all the analyzed regions, and that this frequency of occurrence will increase to 95% by mid-century.