Charles L. Curry


2021

DOI bib
Climate Model Projections for Canada: A Comparison of CMIP5 and CMIP6
S. R. Sobie, Francis W. Zwiers, Charles L. Curry
Atmosphere-Ocean, Volume 59, Issue 4-5

ABSTRACT Recent studies have identified stronger warming in the latest generation of climate model simulations globally, and the same is true for projected changes in Canada. This study examines differences for Canada and six sub-regions between simulations from the latest Sixth Coupled Model Intercomparison Project (CMIP6) and its predecessor CMIP5. Ensembles from both experiments are assessed using a set of derived indices calculated from daily precipitation and temperature, with projections compared at fixed future time intervals and fixed levels of global temperature change. For changes calculated at fixed time intervals most temperature indices display higher projected changes in CMIP6 than CMIP5 for most sub-regions, while greater precipitation changes in CMIP6 occur mainly in extreme precipitation indices. When future projections are calculated at fixed levels of global average temperature increase, the size and spread of differences for future projected changes between CMIP6 and CMIP5 are substantially reduced for most indices. Temperature scaling behaviour, or the regional response to increasing global temperatures, is similar in both ensembles, with annual temperature anomalies for Canada and its sub-regions increasing at between 1.5 and 2.5 times the rate of increase globally, depending on the region. The CMIP6 ensemble projections exhibit modestly stronger scaling behaviour for temperature anomalies in northern Canada, as well as for certain indices of moderate and extreme events. Such temperature scaling differences persist even if anomalously warm CMIP6 global climate models are omitted. Comparing the mean and variance of future projections for Canada in CMIP5 and CMIP6 simulations from the same modelling centre suggests CMIP6 models are significantly warmer in Canada than CMIP5 models at the same level of forcing, with some evidence that internal temperature variability in CMIP6 is reduced compared with CMIP5.

2019

DOI bib
Atmospheric Rivers Increase Future Flood Risk in Western Canada's Largest Pacific River
Charles L. Curry, Siraj ul Islam, Francis W. Zwiers, Stephen J. Déry
Geophysical Research Letters, Volume 46, Issue 3

Snow‐dominated watersheds are bellwethers of climate change. Hydroclimate projections in such basins often find reductions in annual peak runoff due to decreased snowpack under global warming. British Columbia's Fraser River Basin (FRB) is a large, nival basin with exposure to moisture‐laden atmospheric rivers originating in the Pacific Ocean. Landfalling atmospheric rivers over the region in winter are projected to increase in both strength and frequency in Coupled Model Intercomparison Project Phase 5 climate models. We investigate future changes in hydrology and annual peak daily streamflow in the FRB using a hydrologic model driven by a bias‐corrected Coupled Model Intercomparison Project Phase 5 ensemble. Under Representative Concentration Pathway (8.5), the FRB evolves toward a nival‐pluvial regime featuring an increasing association of extreme rainfall with annual peak daily flow, a doubling in cold season peak discharge, and a decrease in the return period of the largest historical flow, from a 1‐in‐200‐year to 1‐in‐50‐year event by the late 21st century.

DOI bib
Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia
Siraj ul Islam, Charles L. Curry, Stephen J. Déry, Francis W. Zwiers
Hydrology and Earth System Sciences, Volume 23, Issue 2

Abstract. In response to ongoing and future-projected global warming, mid-latitude, nival river basins are expected to transition from a snowmelt-dominated flow regime to a nival–pluvial one with an earlier spring freshet of reduced magnitude. There is, however, a rich variation in responses that depends on factors such as the topographic complexity of the basin and the strength of maritime influences. We illustrate the potential effects of a strong maritime influence by studying future changes in cold season flow variability in the Fraser River Basin (FRB) of British Columbia, a large extratropical watershed extending from the Rocky Mountains to the Pacific Coast. We use a process-based hydrological model driven by an ensemble of 21 statistically downscaled simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), following the Representative Concentration Pathway 8.5 (RCP 8.5). Warming under RCP 8.5 leads to reduced winter snowfall, shortening the average snow accumulation season by about one-third. Despite this, large increases in cold season rainfall lead to unprecedented cold season peak flows and increased overall runoff variability in the VIC simulations. Increased cold season rainfall is shown to be the dominant climatic driver in the Coast Mountains, contributing 60 % to mean cold season runoff changes in the 2080s. Cold season runoff at the outlet of the basin increases by 70 % by the 2080s, and its interannual variability more than doubles when compared to the 1990s, suggesting substantial challenges for operational flow forecasting in the region. Furthermore, almost half of the basin (45 %) transitions from a snow-dominated runoff regime in the 1990s to a primarily rain-dominated regime in the 2080s, according to a snowmelt pulse detection algorithm. While these projections are consistent with the anticipated transition from a nival to a nival–pluvial hydrologic regime, the marked increase in FRB cold season runoff is likely linked to more frequent landfalling atmospheric rivers in the region projected in the CMIP5 models, providing insights for other maritime-influenced extratropical basins.

2018

DOI bib
Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia
Charles L. Curry, Francis W. Zwiers
Hydrology and Earth System Sciences, Volume 22, Issue 4

Abstract. The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May–July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño–Southern Oscillation – ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ^ = 0.64; 0.70 (observations; VIC simulation)), the snowmelt rate (ρ^ = 0.43 in VIC), the ENSO and PDO indices (ρ^ = −0.40; −0.41) and (ρ^ = −0.35; −0.38), respectively, and rate of warming subsequent to the date of SWEmax (ρ^ = 0.26; 0.38), are the most influential predictors of APF magnitude in the FRB and its subbasins. The identification of these controls on annual peak flows in the region may be of use in understanding seasonal predictions or future projected streamflow changes.

2017

DOI bib
Examining controls on peak annual streamflow and floods in theFraser River Basin of British Columbia
Charles L. Curry, Francis W. Zwiers

Abstract. The Fraser River basin (FRB) of British Columbia is one of the largest and most important watersheds in Western North America, and is home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in June–July. However, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, April 1 snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute more than 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO)) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (which strongly controls the annual maximum of soil moisture), the snowmelt rate, the ENSO and PDO indices, and rate of warming subsequent to the date of SWEmax are the most influential predictors of APF magnitude in the FRB and its subbasins. The identification of these controls on annual peak flows in the region may be of use in the context of seasonal prediction or future projected streamflow behaviour.