Chris T. Parsons


DOI bib
Co-precipitation of iron and silicon: Reaction kinetics, elemental ratios and the influence of phosphorus
Lu Huang, Chris T. Parsons, Stephanie Slowinski, Philippe Van Cappellen
Chemosphere, Volume 349

A sufficient supply of dissolved silicon (DSi) relative to dissolved phosphorus (DP) may decrease the likelihood of harmful algal blooms in eutrophic waters. Oxidative precipitation of Fe(II) at oxic-anoxic interfaces may contribute to the immobilization of DSi, thereby exerting control over the DSi availability in the overlying water. Nevertheless, the efficacy of DSi immobilization in this context remains to be precisely determined. To investigate the behavior of DSi during Fe(II) oxidation, anoxic solutions containing mixtures of aqueous Fe(II), DSi, and dissolved phosphorus (DP) were exposed to dissolved oxygen (DO) in the batch system. The experimental data, combined with kinetic reaction modeling, indicate that DSi removal during Fe(II) oxidation occurs via two pathways. At the beginning of the experiments, the oxidation of Fe(II)-DSi complexes induces the fast removal of DSi. Upon complete oxidation of Fe(II), further DSi removal is due to adsorption to surface sites of the Fe(III) oxyhydroxides. The presence of DP effectively competes with DSi via both of these pathways during the initial and later stages of the experiments, with as a result more limited removal of DSi during Fe(II) oxidation. Overall, we conclude that at near neutral pH the oxidation of Fe(II) has considerable capacity to immobilize DSi, where the rapid homogeneous oxidation of Fe(II)-DSi results in greater DSi removal compared to surface adsorption. Elevated DP concentration, however, effectively outcompetes DSi in co-precipitation interactions, potentially contributing to enhanced DSi availability within aquatic systems.


DOI bib
Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export
Bowen Zhou, Mahyar Shafii, Chris T. Parsons, Elodie Passeport, Fereidoun Rezanezhad, Ariel Lisogorsky, Philippe Van Cappellen
Science of The Total Environment, Volume 876

Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.


DOI bib
Agricultural phosphorus surplus trajectories for Ontario, Canada (1961–2016), and erosional export risk
Tamara L. Van Staden, K. J. Van Meter, N. B. Basu, Chris T. Parsons, Zahra Akbarzadeh, Philippe Van Cappellen
Science of The Total Environment, Volume 818

Management strategies aimed at reducing nutrient enrichment of surface waters may be hampered by nutrient legacies that have accumulated in the landscape. Here, we apply the Net Anthropogenic Phosphorus Input (NAPI) model to reconstruct the historical phosphorus (P) input trajectories for the province of Ontario, which encompasses the Canadian portion of the drainage basin of the Laurentian Great Lakes (LGL). NAPI considers P inputs from detergent, human and livestock waste, fertilizer inputs, and P outputs by crop uptake. During the entire time period considered, from 1961 to 2016, Ontario experienced positive annual NAPI values. Despite a generally downward NAPI trend since the late 1970s, the lower LGL, especially Lake Erie, continue to be plagued by algal blooms. When comparing NAPI results and river monitoring data for the period 2003 to 2013, P discharged by Canadian rivers into Lake Erie only accounts for 12.5% of the NAPI supplied to the watersheds' agricultural areas. Thus, over 85% of the agricultural NAPI is retained in the watersheds where it contributes to a growing P legacy, primarily as soil P. The slow release of legacy P therefore represents a long-term risk to the recovery of the lake. To help mitigate this risk, we present a methodology to spatially map out the source areas with the greatest potential of erosional export of legacy soil P to surface waters. These areas should be prioritized in soil conservation efforts.

DOI bib
Amorphous silica dissolution kinetics in freshwater environments: Effects of Fe2+ and other solution compositional controls
Lu Huang, Chris T. Parsons, Stephanie Slowinski, Philippe Van Cappellen
Science of The Total Environment, Volume 851

The availability of dissolved silicon (DSi) exerts an important control on phytoplankton communities in freshwater environments: DSi limitation can shift species dominance to non-siliceous algae and increase the likelihood of harmful algal blooms. The availability of DSi in the water column in turn depends on the dissolution kinetics of amorphous silica (ASi), including diatoms frustules and phytoliths. Here, batch dissolution experiments conducted with diatom frustules from three diatom species and synthetic Aerosil OX 50 confirmed the previously reported non-linear dependence of ASi dissolution rate on the degree of undersaturation of the aqueous solution. At least two first-order dissolution rate constants are therefore required to describe the dissolution kinetics at high (typically, ≥0.55) and low (typically, <0.55) degrees of undersaturation. Our results further showed aqueous ferrous ion (Fe2+), which is ubiquitous in anoxic waters, strongly inhibited ASi dissolution. The inhibition is attributed to the preferential binding of Fe2+ to Q2 groups (i.e., surface silicate groups bonded to the silica lattice via two bridging oxygen) which stabilizes the silica surface. However, further increasing the aqueous Fe2+ concentration likely catalyzes the detachment of Q3 groups (i.e., silicate groups bonded to the silica lattice via three bridging oxygen) from the surface. Overall, our study illustrates the manyfold effects the aqueous solution composition, notably the inhibition effect of Fe2+ under anoxic conditions, has on ASi dissolution. The results help to explain the controversial redox dependence of DSi internal loading from sediments, which is vital to quantitatively understanding silicon (Si) cycling in freshwater systems.

DOI bib
Phosphorus retention and transformation in a dammed reservoir of the Thames River, Ontario: Impacts on phosphorus load and speciation
N. Kao, Maryati Mohamed, Ryan J. Sorichetti, Amanda Niederkorn, Philippe Van Cappellen, Chris T. Parsons
Journal of Great Lakes Research, Volume 48, Issue 1

Extensive efforts are underway to reduce phosphorus (P) export from the Lake Erie watershed. On the Canadian side, the Thames River is the largest tributary source of P to Lake Erie’s western basin. However, the role of dams in retaining and modifying riverine P loading to the lake has not been comprehensively evaluated. We assessed whether Fanshawe Reservoir, the largest dam reservoir on the Thames River, acts as a source or sink of P, using year-round discharge and water chemistry data collected in 2018 and 2019. We also determined how in-reservoir processes alter P speciation by comparing the dissolved reactive P to total P ratio (DRP:TP) in upstream and downstream loads. Annually, Fanshawe Reservoir was a net sink for P, retaining 25% (36 tonnes) and 47% (91 tonnes) of TP in 2018 and 2019, respectively. Seasonally, the reservoir oscillated between a source and sink of P. Net P release occurred during the spring of 2018 and the summers of 2018 and 2019, driven by internal P loading and hypolimnetic discharge from the dam. The reservoir did not exert a strong influence on DRP:TP annually, but ratio increases occurred during both summers, concurrent with water column stratification. Our analysis demonstrates that Fanshawe Reservoir is not only an important P sink on the Thames River, but also modulates the timing and speciation of P loads. We therefore propose that the potential of using existing dam reservoirs to attenuate downstream P loads should be more thoroughly explored alongside source based P mitigation strategies.

DOI bib
Salinization as a driver of eutrophication symptoms in an urban lake (Lake Wilcox, Ontario, Canada)
Jovana Radosavljevic, Stephanie Slowinski, Mahyar Shafii, Zahra Akbarzadeh, Fereidoun Rezanezhad, Chris T. Parsons, William Withers, Philippe Van Cappellen
Science of The Total Environment, Volume 846

Lake Wilcox (LW), a shallow kettle lake located in southern Ontario, has experienced multiple phases of land use change associated with human settlement and residential development in its watershed since the early 1900s. Urban growth has coincided with water quality deterioration, including the occurrence of algal blooms and depletion of dissolved oxygen (DO) in the water column. We analyzed 22 years of water chemistry, land use, and climate data (1996-2018) using principal component analysis (PCA) and multiple linear regression (MLR) to identify the contributions of climate, urbanization, and nutrient loading to the changes in water chemistry. Variations in water column stratification, phosphorus (P) speciation, and chl-a (as a proxy for algal abundance) explain 76 % of the observed temporal trends of the four main PCA components derived from water chemistry data. MLR results further imply that the intensity of stratification, quantified by the Brunt-Väisälä frequency, is a major predictor of the changes in water quality. Other important factors explaining the variations in nitrogen (N) and P speciation, and the DO concentrations, are watershed imperviousness and lake chloride concentrations that, in turn, are closely correlated. We conclude that the observed in-lake water quality trends over the past two decades are linked to urbanization via increased salinization associated with expanding impervious land cover, rather than increasing external P loading. The rising salinity promotes water column stratification, which reduces the oxygenation of the hypolimnion and enhances internal P loading to the water column. Thus, stricter controls on the application and runoff of de-icing salt should be considered as part of managing eutrophication symptoms in lakes of cold climate regions.


DOI bib
Effects of pH and Dissolved Silicate on Phosphate Mineral-Water Partitioning with Goethite
Md Abdus Sabur, Chris T. Parsons, Taylor Maavara, Philippe Van Cappellen
ACS Earth and Space Chemistry, Volume 6, Issue 1

Release of sorbed phosphate from ferric iron oxyhydroxides can contribute to excessive algal growth in surface water bodies. Dissolved silicate has been hypothesized to facilitate phosphate desorption by competing for mineral surface sites. Here, we conducted phosphate and silicate adsorption experiments with goethite under a wide pH range (3–11), both individually (P or Si) and simultaneously (P plus Si). The entire experimental data set was successfully reproduced by the charge distribution multisite surface complexation (CD-MUSIC) model. Phosphate adsorption was highest under acidic conditions and gradually decreased from near-neutral to alkaline pH conditions. Maximum silicate adsorption, in contrast, occurred under alkaline conditions, peaking around pH 10. The competitive effect of silicate on phosphate adsorption was negligible under acidic conditions, becoming more pronounced under alkaline conditions and elevated molar Si:P ratios (>4). In a subsequent experiment, desorption of phosphate with increasing pH was monitored, in the presence or absence of dissolved silicate. While, as expected, desorption of phosphate was observed during the transition from acidic to alkaline conditions, a fraction of phosphate remained irreversibly bound to goethite. Even at high Si:P ratios and alkaline pH, dissolved silicate did not affect phosphate desorption, implying that kinetic factors prevented silicate from displacing phosphate from goethite binding sites.


DOI bib
Understanding and managing the re-eutrophication of Lake Erie: Knowledge gaps and research priorities
Mohamed N. Mohamed, Christopher Wellen, Chris T. Parsons, William D. Taylor, George B. Arhonditsis, Krista M. Chomicki, Duncan Boyd, Paul Weidman, Scott O. C. Mundle, Philippe Van Cappellen, Andrew N. Sharpley, Douglas Haffner
Freshwater Science, Volume 38, Issue 4

AbstractEutrophication of freshwaters is already a problem in many regions globally and will probably worsen as human populations grow and consume more resources. The ability of researchers and gov...


DOI bib
Sediment phosphorus speciation and mobility under dynamic redox conditions
Chris T. Parsons, Fereidoun Rezanezhad, David O’Connell, Philippe Van Cappellen
Biogeosciences, Volume 14, Issue 14

Abstract. Anthropogenic nutrient enrichment has caused phosphorus (P) accumulation in many freshwater sediments, raising concerns that internal loading from legacy P may delay the recovery of aquatic ecosystems suffering from eutrophication. Benthic recycling of P strongly depends on the redox regime within surficial sediment. In many shallow environments, redox conditions tend to be highly dynamic as a result of, among others, bioturbation by macrofauna, root activity, sediment resuspension and seasonal variations in bottom-water oxygen (O2) concentrations. To gain insight into the mobility and biogeochemistry of P under fluctuating redox conditions, a suspension of sediment from a hypereutrophic freshwater marsh was exposed to alternating 7-day periods of purging with air and nitrogen gas (N2), for a total duration of 74 days, in a bioreactor system. We present comprehensive data time series of bulk aqueous- and solid-phase chemistry, solid-phase phosphorus speciation and hydrolytic enzyme activities demonstrating the mass balanced redistribution of P in sediment during redox cycling. Aqueous phosphate concentrations remained low ( ∼ 2.5 µM) under oxic conditions due to sorption to iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted, the reductive dissolution of iron(III) oxyhydroxides released P. However, only 4.5 % of the released P accumulated in solution while the rest was redistributed between the MgCl2 and NaHCO3 extractable fractions of the solid phase. Thus, under the short redox fluctuations imposed in the experiments, P remobilization to the aqueous phase remained relatively limited. Orthophosphate predominated at all times during the experiment in both the solid and aqueous phase. Combined P monoesters and diesters accounted for between 9 and 16 % of sediment particulate P. Phosphatase activities up to 2.4 mmol h−1 kg−1 indicated the potential for rapid mineralization of organic P (Po), in particular during periods of aeration when the activity of phosphomonoesterases was 37 % higher than under N2 sparging. The results emphasize that the magnitude and timing of internal P loading during periods of anoxia are dependent on both P redistribution within sediments and bottom-water nitrate concentrations.