Christopher Spence


2024

DOI bib
Radiation, Air Temperature, and Soil Water Availability Drive Tree Water Deficit Across Temporal Scales in Canada's Western Boreal Forest
Nia Perron, Jennifer L. Baltzer, Matteo Detto, Magali F. Nehemy, Christopher Spence, Gabriel Hould‐Gosselin, Haley Alcock, Bram Hadiwijaya, Colin P. Laroque, Oliver Sonnentag
Geophysical Research Letters, Volume 51, Issue 8

Abstract Changes are projected for the boreal biome with complex and variable effects on forest vegetation including drought‐induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi‐day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short‐term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability.

2023

DOI bib
Modeling the sensitivity of snowmelt, soil moisture and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield, Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield
Hydrology and Earth System Sciences Discussions, Volume 2023

Abstract. This study evaluated the effects of climate perturbations on snowmelt, soil moisture and streamflow generation in small Canadian Prairie basins using a modeling approach based on classification of basin biophysical and hydraulic parameters. Seven basin classes that encompass the entirety of the Prairie ecozone in Canada were determined by cluster analysis of biophysical characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairie ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all the basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grassland basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 °C could be fully offset by P increase of 11 % in all the basins. These results can be used to 1) identify locations which had the largest hydrological sensitivities to changing climate; and 2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairie ecozone.

DOI bib
Modeling the sensitivity of snowmelt, soil moisture and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield, Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield
Hydrology and Earth System Sciences Discussions, Volume 2023

Abstract. This study evaluated the effects of climate perturbations on snowmelt, soil moisture and streamflow generation in small Canadian Prairie basins using a modeling approach based on classification of basin biophysical and hydraulic parameters. Seven basin classes that encompass the entirety of the Prairie ecozone in Canada were determined by cluster analysis of biophysical characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairie ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all the basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grassland basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 °C could be fully offset by P increase of 11 % in all the basins. These results can be used to 1) identify locations which had the largest hydrological sensitivities to changing climate; and 2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairie ecozone.

DOI bib
An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes
Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean, Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean
Cold Regions Science and Technology, Volume 210

The seasonal dynamics of freshwater lake ice and its interactions with air and snow are studied in two small subarctic lakes with comparable surface areas but contrasting depths (4.3 versus 91 m). Two, 2.9 m long thermistor chain sensors (Snow and Ice Mass Balance Apparatuses), were used to remotely measure air, snow, ice, and water temperatures every 15-min between December 2021 and March 2022. Results showed that freeze-up occurred later in the deeper lake (Ryan Lake) and earlier in the shallow lake (Landing Lake). Ice growth was significantly faster in Ryan Lake than in Landing Lake, due to cold water temperatures (mean (Tw¯) =0.65 to 0.96°C) persisting beneath the ice. In Landing Lake, basal ice growth was hindered because of warm water temperatures (Tw¯=1.5 to 2.1°C) caused by heat released from lake sediments. Variability in air temperatures at both lakes had significant influences on the thermal regimes of ice and snow, particularly in Ryan Lake, where ice temperatures were more sensitive to rapid changes in air temperatures. This finding suggests that conductive heat transfer through the air-water continuum may be more sensitive to variability in air temperatures in deeper lakes with colder water temperatures than in shallow lakes with warmer water temperatures, if snow depths and densities are comparable. This study highlights the significance of lake morphology and rapid air temperature variability on influencing ice growth processes. Conclusions drawn aim to improve the representation of ice growth processes in regional and global climate models, and to improve ice safety for northern communities.

DOI bib
An analysis of ice growth and temperature dynamics in two Canadian subarctic lakes
Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean, Arash Rafat, Homa Kheyrollah Pour, Christopher Spence, Michael J. Palmer, Alex MacLean
Cold Regions Science and Technology, Volume 210

The seasonal dynamics of freshwater lake ice and its interactions with air and snow are studied in two small subarctic lakes with comparable surface areas but contrasting depths (4.3 versus 91 m). Two, 2.9 m long thermistor chain sensors (Snow and Ice Mass Balance Apparatuses), were used to remotely measure air, snow, ice, and water temperatures every 15-min between December 2021 and March 2022. Results showed that freeze-up occurred later in the deeper lake (Ryan Lake) and earlier in the shallow lake (Landing Lake). Ice growth was significantly faster in Ryan Lake than in Landing Lake, due to cold water temperatures (mean (Tw¯) =0.65 to 0.96°C) persisting beneath the ice. In Landing Lake, basal ice growth was hindered because of warm water temperatures (Tw¯=1.5 to 2.1°C) caused by heat released from lake sediments. Variability in air temperatures at both lakes had significant influences on the thermal regimes of ice and snow, particularly in Ryan Lake, where ice temperatures were more sensitive to rapid changes in air temperatures. This finding suggests that conductive heat transfer through the air-water continuum may be more sensitive to variability in air temperatures in deeper lakes with colder water temperatures than in shallow lakes with warmer water temperatures, if snow depths and densities are comparable. This study highlights the significance of lake morphology and rapid air temperature variability on influencing ice growth processes. Conclusions drawn aim to improve the representation of ice growth processes in regional and global climate models, and to improve ice safety for northern communities.

DOI bib
Modelling Subarctic watershed dissolved organic carbon response to hydroclimatic regime
Sumit Sharma, Martyn N. Futter, Christopher Spence, Jason J. Venkiteswaran, Colin J. Whitfield, Sumit Sharma, Martyn N. Futter, Christopher Spence, Jason J. Venkiteswaran, Colin J. Whitfield
Science of The Total Environment, Volume 857

Shifts in hydroclimatic regimes associated with global climate change may impact freshwater availability and quality. In high latitudes of the northern hemisphere, where vast quantities of carbon are stored terrestrially, explaining landscape-scale carbon (C) budgets and associated pollutant transfer is necessary for understanding the impact of changing hydroclimatic regimes. We used a dynamic modelling approach to simulate streamflow, DOC concentration, and DOC export in a northern Canadian catchment that has undergone notable climate warming, and will continue to for the remainder of this century. The Integrated Catchment model for Carbon (INCA-C) was successfully calibrated to a multi-year period (2012–2016) that represents a range in hydrologic conditions. The model was subsequently run over 30-year periods representing baseline and two future climate scenarios. Average discharge is predicted to decrease under an elevated temperature scenario (22–27 % of baseline) but increase (116–175 % of baseline) under an elevated temperature and precipitation scenario. In the latter scenario the nival hydroclimatic regime is expected to shift to a combined nival and pluvial regime. Average DOC flux over 30 years is predicted to decrease (24–27 % of baseline) under the elevated temperature scenario, as higher DOC concentrations are offset by lower runoff. Under the elevated temperature and precipitation scenario, results suggest an increase in carbon export of 64–81 % above baseline. These increases are attributed to greater connectivity of the catchment. The largest increase in DOC export is expected to occur in early winter. These predicted changes in DOC export, particularly under a climate that is warmer and wetter could be part of larger ecosystem change and warrant additional monitoring efforts in the region.

DOI bib
Modelling Subarctic watershed dissolved organic carbon response to hydroclimatic regime
Sumit Sharma, Martyn N. Futter, Christopher Spence, Jason J. Venkiteswaran, Colin J. Whitfield, Sumit Sharma, Martyn N. Futter, Christopher Spence, Jason J. Venkiteswaran, Colin J. Whitfield
Science of The Total Environment, Volume 857

Shifts in hydroclimatic regimes associated with global climate change may impact freshwater availability and quality. In high latitudes of the northern hemisphere, where vast quantities of carbon are stored terrestrially, explaining landscape-scale carbon (C) budgets and associated pollutant transfer is necessary for understanding the impact of changing hydroclimatic regimes. We used a dynamic modelling approach to simulate streamflow, DOC concentration, and DOC export in a northern Canadian catchment that has undergone notable climate warming, and will continue to for the remainder of this century. The Integrated Catchment model for Carbon (INCA-C) was successfully calibrated to a multi-year period (2012–2016) that represents a range in hydrologic conditions. The model was subsequently run over 30-year periods representing baseline and two future climate scenarios. Average discharge is predicted to decrease under an elevated temperature scenario (22–27 % of baseline) but increase (116–175 % of baseline) under an elevated temperature and precipitation scenario. In the latter scenario the nival hydroclimatic regime is expected to shift to a combined nival and pluvial regime. Average DOC flux over 30 years is predicted to decrease (24–27 % of baseline) under the elevated temperature scenario, as higher DOC concentrations are offset by lower runoff. Under the elevated temperature and precipitation scenario, results suggest an increase in carbon export of 64–81 % above baseline. These increases are attributed to greater connectivity of the catchment. The largest increase in DOC export is expected to occur in early winter. These predicted changes in DOC export, particularly under a climate that is warmer and wetter could be part of larger ecosystem change and warrant additional monitoring efforts in the region.

DOI bib
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield, Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield
Hydrology and Earth System Sciences, Volume 27, Issue 19

Abstract. This study evaluated the effects of climate perturbations on snowmelt, soil moisture, and streamflow generation in small Canadian Prairies basins using a modelling approach based on classification of basin biophysical characteristics. Seven basin classes that encompass the entirety of the Prairies Ecozone in Canada were determined by cluster analysis of these characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform, which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge, and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairies Ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grasslands (See Fig. 1) basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming-induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 ∘C could be fully offset by a P increase of 11 % in all basins. These results can be used to (1) identify locations which had the largest hydrological sensitivities to changing climate and (2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairies Ecozone.

DOI bib
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield, Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, Colin J. Whitfield
Hydrology and Earth System Sciences, Volume 27, Issue 19

Abstract. This study evaluated the effects of climate perturbations on snowmelt, soil moisture, and streamflow generation in small Canadian Prairies basins using a modelling approach based on classification of basin biophysical characteristics. Seven basin classes that encompass the entirety of the Prairies Ecozone in Canada were determined by cluster analysis of these characteristics. Individual semi-distributed virtual basin (VB) models representing these classes were parameterized in the Cold Regions Hydrological Model (CRHM) platform, which includes modules for snowmelt and sublimation, soil freezing and thawing, actual evapotranspiration (ET), soil moisture dynamics, groundwater recharge, and depressional storage dynamics including fill and spill runoff generation and variable connected areas. Precipitation (P) and temperature (T) perturbation scenarios covering the range of climate model predictions for the 21st century were used to evaluate climate sensitivity of hydrological processes in individual land cover and basin types across the Prairies Ecozone. Results indicated that snow accumulation in wetlands had a greater sensitivity to P and T than that in croplands and grasslands in all basin types. Wetland soil moisture was also more sensitive to T than the cropland and grassland soil moisture. Jointly influenced by land cover distribution and local climate, basin-average snow accumulation was more sensitive to T in the drier and grassland-characterized basins than in the wetter basins dominated by cropland, whilst basin-average soil moisture was most sensitive to T and P perturbations in basins typified by pothole depressions and broad river valleys. Annual streamflow had the greatest sensitivities to T and P in the dry and poorly connected Interior Grasslands (See Fig. 1) basins but the smallest in the wet and well-connected Southern Manitoba basins. The ability of P to compensate for warming-induced reductions in snow accumulation and streamflow was much higher in the wetter and cropland-dominated basins than in the drier and grassland-characterized basins, whilst decreases in cropland soil moisture induced by the maximum expected warming of 6 ∘C could be fully offset by a P increase of 11 % in all basins. These results can be used to (1) identify locations which had the largest hydrological sensitivities to changing climate and (2) diagnose underlying processes responsible for hydrological responses to expected climate change. Variations of hydrological sensitivity in land cover and basin types suggest that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the Prairies Ecozone.

DOI bib
Evidence for unexpected net permafrost aggradation driven by local hydrology and climatic triggers
Anastasia E. Sniderhan, Christopher Spence, Steven V. Kokelj, Jennifer L. Baltzer
Environmental Research Letters, Volume 18, Issue 11

Abstract Rapid rates of high latitude warming over the past century have led to widespread research on permafrost thaw and its consequences. Studies from lowland plains environments in the discontinuous permafrost zone have highlighted extensive areal loss of permafrost, largely through observations of the collapse of forested permafrost plateaus into wetland features. These low-relief environments tend to have poor drainage, which initiates runaway thaw as increased soil moisture amplifies permafrost degradation. In contrast to lowland plains, the Taiga Shield landscape features a network of lakes, wetlands, soil-filled lowlands, and forests interspersed with bedrock outcrops. With the exposed (or near-surface) bedrock in this landscape, this region may have greater terrain stability under a warming climate than the lowland plains. The hydrological complexity of the Taiga Shield may also contribute to more varied trajectories for permafrost in this landscape. We investigated land cover change and implications for permafrost in an area that typifies the Taiga Shield. We took intensive ground-based measurements of soil organic layer (SOL) thickness and frost table depth to characterize different land cover types. Archival aerial photographs and recent satellite imagery from the area allowed us to assess land cover change between 1972 and 2017. Associations between permafrost, SOL, and land cover allowed us to use land cover as a proxy for change in permafrost extent. Our results suggest that both aggradation and degradation of permafrost has occurred within the Taiga Shield landscape over this 45 year period, but interestingly we found evidence for a net increase in permafrost extent. Permafrost aggradation in this landscape seems to be driven by a combination of local hydrology and climatic triggers that lead to colder, drier soil conditions that are favourable for the development of permafrost. This study highlights the importance of considering diverse and heterogenous landscapes in the study of changing permafrost ecosystems.

2022

DOI bib
Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska
Chang Huang, L. C. Smith, Ethan D. Kyzivat, Jessica V. Fayne, Yisen Ming, Christopher Spence
GIScience & Remote Sensing, Volume 59, Issue 1

ABSTRACT Accurate and frequent mapping of transient wetland inundation in the boreal region is critical for monitoring the ecological and societal functions of wetlands. Satellite Synthetic Aperture Radar (SAR) has long been used to map wetlands due to its sensitivity to surface inundation and ability to penetrate clouds, darkness, and certain vegetation canopies. Here, we track boreal wetland inundation by developing a two-step modified decision-tree algorithm implemented in Google Earth Engine using Sentinel-1 C-band SAR and Sentinel-2 Multispectral Instrument (MSI) time-series data as inputs. This approach incorporates temporal as well as spatial characteristics of SAR backscatter and is evaluated for the Peace-Athabasca Delta, Alberta (PAD), and Yukon Flats, Alaska (YF) from May 2017 to October 2019. Within these two boreal study areas, we map spatiotemporal patterns in wetland inundation classes of Open Water (OW), Floating Plants (FP), Emergent Plants (EP), and Flooded Vegetation (FV). Temporal variability, frequency, and maximum extents of transient wetland inundation are quantified. Retrieved inundation estimates are compared with in-situ field mapping obtained during the NASA Arctic-Boreal Vulnerability Experiment (ABoVE), and a multi-temporal Landsat-derived surface water map. Over the 2017–2019 study period, we find that fractional inundation area ranged from 18.0% to 19.0% in the PAD, and from 10.7% to 12.1% in the YF. Transient wetland inundation covered ~595 km2 of the PAD, comprising ~9.1% of its landscape, and ~102 km2 of the YF, comprising ~3.6%. The implications of these findings for wetland function monitoring, and estimating landscape-scale methane emissions are discussed, together with limitations and uncertainties of our approach. We conclude that time series of Sentinel-1 C-band SAR backscatter, screened with Sentinel-2 MSI optical imagery and validated by field measurements, offer a valuable tool for tracking transient boreal wetland inundation. GRAPHICAL ABSTRACT

DOI bib
Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach
Christopher Spence, Zhihua He, Kevin Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, Jared D. Wolfe
Hydrology and Earth System Sciences, Volume 26, Issue 7

Abstract. Significant challenges from changes in climate and land use face sustainable water use in the Canadian Prairies ecozone. The region has experienced significant warming since the mid-20th century, and continued warming of an additional 2 ∘C by 2050 is expected. This paper aims to enhance understanding of climate controls on Prairie basin hydrology through numerical model experiments. It approaches this by developing a basin-classification-based virtual modelling framework for a portion of the Prairie region and applying the modelling framework to investigate the hydrological sensitivity of one Prairie basin class (High Elevation Grasslands) to changes in climate. High Elevation Grasslands dominate much of central and southern Alberta and parts of south-western Saskatchewan, with outliers in eastern Saskatchewan and western Manitoba. The experiments revealed that High Elevation Grassland snowpacks are highly sensitive to changes in climate but that this varies geographically. Spring maximum snow water equivalent in grasslands decreases 8 % ∘C−1 of warming. Climate scenario simulations indicated that a 2 ∘C increase in temperature requires at least an increase of 20 % in mean annual precipitation for there to be enough additional snowfall to compensate for enhanced melt losses. The sensitivity in runoff is less linear and varies substantially across the study domain: simulations using 6 ∘C of warming, and a 30 % increase in mean annual precipitation yields simulated decreases in annual runoff of 40 % in climates of the western Prairie but 55 % increases in climates of eastern portions. These results can be used to identify those areas of the region that are most sensitive to climate change and highlight focus areas for monitoring and adaptation. The results also demonstrate how a basin classification-based virtual modelling framework can be applied to evaluate regional-scale impacts of climate change with relatively high spatial resolution in a robust, effective and efficient manner.

DOI bib
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
Christopher Spence, Zhihua He, Kevin Shook, John W. Pomeroy, Colin J. Whitfield, Jared D. Wolfe
Hydrology and Earth System Sciences, Volume 26, Issue 21

Abstract. Wetland drainage has been pervasive in the North American Prairie Pothole Region. There is strong evidence that this drainage increases the hydrological connectivity of previously isolated wetlands and, in turn, runoff response to snowmelt and rainfall. It can be hard to disentangle the role of climate from the influence of wetland drainage in observed records. In this study, a basin-classification-based virtual modelling approach is described that can isolate these effects on runoff regimes. The basin class which was examined, entitled Pothole Till, extends throughout much of Canada's portion of the Prairie Pothole Region. Three knowledge gaps were addressed. First, it was determined that the spatial pattern in which wetlands are drained has little influence on how much the runoff regime was altered. Second, no threshold could be identified below which wetland drainage has no effect on the runoff regime, with drainage thresholds as low as 10 % in the area being evaluated. Third, wetter regions were less sensitive to drainage as they tend to be better hydrologically connected, even in the absence of drainage. Low flows were the least affected by drainage. Conversely, during extremely wet years, runoff depths could double as the result of complete wetland removal. Simulated median annual runoff depths were the most responsive, potentially tripling under typical conditions with high degrees of wetland drainage. As storage capacity is removed from the landscape through wetland drainage, the size of the storage deficit of median years begins to decrease and to converge on those of the extreme wet years. Model simulations of flood frequency suggest that, because of these changes in antecedent conditions, precipitation that once could generate a median event with wetland drainage can generate what would have been a maximum event without wetland drainage. The advantage of the basin-classification-based virtual modelling approach employed here is that it simulated a long period that included a wide variety of precipitation and antecedent storage conditions across a diversity of wetland complexes. This has allowed seemingly disparate results of past research to be put into context and finds that conflicting results are often only because of differences in spatial scale and temporal scope of investigation. A conceptual framework is provided that shows, in general, how annual runoff in different climatic and drainage situations will likely respond to wetland drainage in the Prairie Pothole Region.

2021

DOI bib
Synthesis of science: findings on Canadian Prairie wetland drainage
Helen M. Baulch, Colin J. Whitfield, Jared D. Wolfe, Nandita B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Andrew Ireson, Patrick Lloyd‐Smith, Phil Loring, John W. Pomeroy, Kevin Shook, Christopher Spence, Helen M. Baulch, Colin J. Whitfield, Jared D. Wolfe, Nandita B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Andrew Ireson, Patrick Lloyd‐Smith, Phil Loring, John W. Pomeroy, Kevin Shook, Christopher Spence
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 46, Issue 4

Extensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Prairi...

DOI bib
Synthesis of science: findings on Canadian Prairie wetland drainage
Helen M. Baulch, Colin J. Whitfield, Jared D. Wolfe, Nandita B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Andrew Ireson, Patrick Lloyd‐Smith, Phil Loring, John W. Pomeroy, Kevin Shook, Christopher Spence, Helen M. Baulch, Colin J. Whitfield, Jared D. Wolfe, Nandita B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Andrew Ireson, Patrick Lloyd‐Smith, Phil Loring, John W. Pomeroy, Kevin Shook, Christopher Spence
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 46, Issue 4

Extensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Prairi...

DOI bib
Fill‐and‐Spill: A Process Description of Runoff Generation at the Scale of the Beholder
Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman, Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman
Water Resources Research, Volume 57, Issue 5

Descriptions of runoff generation processes continue to grow, helping to reveal complexities and hydrologic behavior across a wide range of environments and scales. But to date, there has been little grouping of these process facts. Here, we discuss how the “fill‐and‐spill” concept can provide a framework to group event‐based runoff generation processes. The fill‐and‐spill concept describes where vertical and lateral additions of water to a landscape unit are placed into storage (the fill)—and only when this storage reaches a critical level (the spill), and other storages are filled and become connected, does a previously infeasible (but subsequently important) outflow pathway become activated. We show that fill‐and‐spill can be observed at a range of scales and propose that future fieldwork should first define the scale of interest and then evaluate what is filling‐and‐spilling at that scale. Such an approach may be helpful for those instrumenting and modeling new hillslopes or catchments because it provides a structured way to develop perceptual models for runoff generation and to group behaviors at different sites and scales.

DOI bib
Fill‐and‐Spill: A Process Description of Runoff Generation at the Scale of the Beholder
Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman, Jeffrey J. McDonnell, Christopher Spence, Daniel J. Karran, Ilja van Meerveld, C. J. Harman
Water Resources Research, Volume 57, Issue 5

Descriptions of runoff generation processes continue to grow, helping to reveal complexities and hydrologic behavior across a wide range of environments and scales. But to date, there has been little grouping of these process facts. Here, we discuss how the “fill‐and‐spill” concept can provide a framework to group event‐based runoff generation processes. The fill‐and‐spill concept describes where vertical and lateral additions of water to a landscape unit are placed into storage (the fill)—and only when this storage reaches a critical level (the spill), and other storages are filled and become connected, does a previously infeasible (but subsequently important) outflow pathway become activated. We show that fill‐and‐spill can be observed at a range of scales and propose that future fieldwork should first define the scale of interest and then evaluate what is filling‐and‐spilling at that scale. Such an approach may be helpful for those instrumenting and modeling new hillslopes or catchments because it provides a structured way to develop perceptual models for runoff generation and to group behaviors at different sites and scales.

DOI bib
Invited perspective: What lies beneath a changing Arctic?
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor Bense, Daniel Fortier, Christopher Spence, Christophe Grenier, Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor Bense, Daniel Fortier, Christopher Spence, Christophe Grenier
The Cryosphere, Volume 15, Issue 1

Abstract. As permafrost thaws in the Arctic, new subsurface pathways open for the transport of groundwater, energy, and solutes. We identify different ways that these subsurface changes are driving observed surface consequences, including the potential for increased contaminant transport, modification to water resources, and enhanced rates of infrastructure (e.g. buildings and roads) damage. Further, as permafrost thaws it allows groundwater to transport carbon, nutrients, and other dissolved constituents from terrestrial to aquatic environments via progressively deeper subsurface flow paths. Cryohydrogeology, the study of groundwater in cold regions, should be included in northern research initiatives to account for this hidden catalyst of environmental and societal change.

DOI bib
Invited perspective: What lies beneath a changing Arctic?
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor Bense, Daniel Fortier, Christopher Spence, Christophe Grenier, Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor Bense, Daniel Fortier, Christopher Spence, Christophe Grenier
The Cryosphere, Volume 15, Issue 1

Abstract. As permafrost thaws in the Arctic, new subsurface pathways open for the transport of groundwater, energy, and solutes. We identify different ways that these subsurface changes are driving observed surface consequences, including the potential for increased contaminant transport, modification to water resources, and enhanced rates of infrastructure (e.g. buildings and roads) damage. Further, as permafrost thaws it allows groundwater to transport carbon, nutrients, and other dissolved constituents from terrestrial to aquatic environments via progressively deeper subsurface flow paths. Cryohydrogeology, the study of groundwater in cold regions, should be included in northern research initiatives to account for this hidden catalyst of environmental and societal change.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro, C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro, C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, W. L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, Andrew Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

DOI bib
The Baker Creek Research Watershed: Streamflow data highlighting the behaviour of an intermittent Canadian Shield stream through a wet–dry–wet cycle
Christopher Spence, N. Hedstrom, Christopher Spence, N. Hedstrom
Hydrological Processes, Volume 35, Issue 2

Baker Creek drains water from subarctic Canadian Shield terrain comprised of a mix of exposed Precambrian bedrock, lakes, open black spruce forest and peat filled depressions. Research in the catchment has focused on hydrological processes at the hillslope and catchment scales. Streamflow is gauged from several diverse sub-catchments ranging in size from 9 to 155 km2. The period of record (2003–2019) of streamflow from these sub-catchments extends from 12 to 17 years, and these data are the focus of this note. Such data are unique in this remote region. 2003–2019 was a period that included both historic wet and dry conditions. Observations during such a diversity of conditions are helping to improve understanding of how stream networks that drain this landscape expand and contract in response to short and long hydroclimatic cycles. These data from a distinctly cold and dry region of low relief, thin soils, exposed bedrock and permafrost are a valuable contribution to the global diversity of research catchment data.

DOI bib
The Baker Creek Research Watershed: Streamflow data highlighting the behaviour of an intermittent Canadian Shield stream through a wet–dry–wet cycle
Christopher Spence, N. Hedstrom, Christopher Spence, N. Hedstrom
Hydrological Processes, Volume 35, Issue 2

Baker Creek drains water from subarctic Canadian Shield terrain comprised of a mix of exposed Precambrian bedrock, lakes, open black spruce forest and peat filled depressions. Research in the catchment has focused on hydrological processes at the hillslope and catchment scales. Streamflow is gauged from several diverse sub-catchments ranging in size from 9 to 155 km2. The period of record (2003–2019) of streamflow from these sub-catchments extends from 12 to 17 years, and these data are the focus of this note. Such data are unique in this remote region. 2003–2019 was a period that included both historic wet and dry conditions. Observations during such a diversity of conditions are helping to improve understanding of how stream networks that drain this landscape expand and contract in response to short and long hydroclimatic cycles. These data from a distinctly cold and dry region of low relief, thin soils, exposed bedrock and permafrost are a valuable contribution to the global diversity of research catchment data.

2020

DOI bib
Hydrological resilience to forest fire in the subarctic Canadian shield
Christopher Spence, N. Hedstrom, Suzanne E. Tank, W. L. Quinton, David Olefeldt, Stefan Goodman, N.P. Dion
Hydrological Processes, Volume 34, Issue 25

Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic‐associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre‐fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.

2019

DOI bib
Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies
Hailong Wang, Doerthe Tetzlaff, J. M. Buttle, Sean K. Carey, Hjalmar Laudon, J. P. McNamara, Christopher Spence, Chris Soulsby
Science of The Total Environment, Volume 656

We assessed the hydrological implications of climate effects on vegetation phenology in northern environments by fusion of data from remote-sensing and local catchment monitoring. Studies using satellite data have shown earlier and later dates for the start (SOS) and end of growing seasons (EOS), respectively, in the Northern Hemisphere over the last 3 decades. However, estimates of the change greatly depend on the satellite data utilized. Validation with experimental data on climate-vegetation-hydrology interactions requires long-term observations of multiple variables which are rare and usually restricted to small catchments. In this study, we used two NDVI (normalized difference vegetation index) products (at ~25 & 0.5 km spatial resolutions) to infer SOS and EOS for six northern catchments, and then investigated the likely climate impacts on phenology change and consequent effects on catchment water yield, using both assimilated data (GLDAS: global land data assimilation system) and direct catchment observations. The major findings are: (1) The assimilated air temperature compared well with catchment observations (regression slopes and R2 close to 1), whereas underestimations of summer rainstorms resulted in overall underestimations of precipitation (regression slopes of 0.3-0.7, R2 ≥ 0.46). (2) The two NDVI products inferred different vegetation phenology characteristics. (3) Increased mean pre-season temperature significantly influenced the advance of SOS and delay of EOS. The precipitation influence was weaker, but delayed SOS corresponding to increased pre-season precipitation at most sites can be related to later snow melting. (4) Decreased catchment streamflow over the last 15 years could be related to the advance in SOS and extension of growing seasons. Greater streamflow reductions in the cold sites than the warm ones imply stronger climate warming impacts on vegetation and hydrology in colder northerly environments. The methods used in this study have potential for better understanding interactions between vegetation, climate and hydrology in observation-scarce regions.

2018

DOI bib
Prairie water: a global water futures project to enhance the resilience of prairie communities through sustainable water management
Christopher Spence, Jared D. Wolfe, Colin J. Whitfield, Helen M. Baulch, N. B. Basu, Angela Bedard‐Haughn, Ken Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Karsten Liber, Jeffrey J. McDonnell, Christy A. Morrissey, John W. Pomeroy, Maureen G. Reed, Graham Strickert
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 44, Issue 2

‘I would walk to the end of the street and out over the prairie with the clickety grasshoppers bunging in arcs ahead of me and I could hear the hum and twang of the wind in the great prairie harp o...
Search
Co-authors
Venues