2022
DOI
bib
abs
Community Surveillance of Omicron in Ontario: Wastewater-based Epidemiology Comes of Age.
Authors presented in alphabetical order,
Eric J. Arts,
R. Stephen Brown,
David Bulir,
Trevor C. Charles,
Christopher T. DeGroot,
Robert Delatolla,
Jean‐Paul Desaulniers,
Elizabeth A. Edwards,
Meghan Fuzzen,
Kimberley Gilbride,
Jodi Gilchrist,
Lawrence Goodridge,
Tyson E. Graber,
Marc Habash,
Peter Jüni,
Andrea E. Kirkwood,
James Knockleby,
Christopher J. Kyle,
Chrystal Landgraff,
Chand S. Mangat,
Douglas G. Manuel,
R. Michael L. McKay,
Edgard M. Mejia,
Aleksandra Mloszewska,
Banu Örmeci,
Claire Oswald,
Sarah Jane Payne,
Hui Peng,
Shelley Peterson,
Art F. Y. Poon,
Mark R. Servos,
Denina Simmons,
Jianxian Sun,
Minqing Ivy Yang,
Gustavo Ybazeta
Abstract Wastewater-based surveillance of SARS-CoV-2 RNA has been implemented at building, neighbourhood, and city levels throughout the world. Implementation strategies and analysis methods differ, but they all aim to provide rapid and reliable information about community COVID-19 health states. A viable and sustainable SARS-CoV-2 surveillance network must not only provide reliable and timely information about COVID-19 trends, but also provide for scalability as well as accurate detection of known or unknown emerging variants. Emergence of the SARS-CoV-2 variant of concern Omicron in late Fall 2021 presented an excellent opportunity to benchmark individual and aggregated data outputs of the Ontario Wastewater Surveillance Initiative in Canada; this public health-integrated surveillance network monitors wastewaters from over 10 million people across major population centres of the province. We demonstrate that this coordinated approach provides excellent situational awareness, comparing favourably with traditional clinical surveillance measures. Thus, aggregated datasets compiled from multiple wastewater-based surveillance nodes can provide sufficient sensitivity (i.e., early indication of increasing and decreasing incidence of SARS-CoV-2) and specificity (i.e., allele frequency estimation of emerging variants) with which to make informed public health decisions at regional- and state-levels.
DOI
bib
abs
Metagenomics of Wastewater Influent from Wastewater Treatment Facilities across Ontario in the Era of Emerging SARS-CoV-2 Variants of Concern
Opeyemi U. Lawal,
Linkang Zhang,
Valeria R. Parreira,
R. Stephen Brown,
Charles Chettleburgh,
Nora Dannah,
Robert Delatolla,
Kimberly Gilbride,
Tyson E. Graber,
Golam Islam,
James Knockleby,
Sean Ma,
Hanlan McDougall,
R. Michael L. McKay,
Aleksandra Mloszewska,
Claire Oswald,
Mark R. Servos,
Megan Swinwood-Sky,
Gustavo Ybazeta,
Marc Habash,
Lawrence Goodridge
Microbiology Resource Announcements, Volume 11, Issue 7
We report metagenomic sequencing analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in composite wastewater influent from 10 regions in Ontario, Canada, during the transition between Delta and Omicron variants of concern. The Delta and Omicron BA.1/BA.1.1 and BA.2-defining mutations occurring in various frequencies were reported in the consensus and subconsensus sequences of the composite samples.
2019
Bitumen extraction via surface mining in the Athabasca Oil Sands Region results in permanent alteration of boreal forests and wetlands. As part of their legal requirements, oil companies must reclaim disturbed landscapes into functioning ecosystems. Despite considerable work establishing upland forests, only two pilot wetland-peatland systems integrated within a watershed have been constructed to date. Peatland reclamation is challenging as it requires complete reconstruction with few guidelines or previous work in this region. Furthermore, the variable sub-humid climate and salinity of tailings materials present additional challenges. In 2012, Syncrude Canada Ltd. constructed a 52-ha pilot upland-wetland system, the Sandhill Fen Watershed, which was designed with a pump and underdrain system to provide freshwater and enhance drainage to limit salinization from underlying soft tailings materials that have elevated electrical conductivity (EC) and Na+. The objective of this research is to evaluate the hydrochemical response of a constructed wetland to variations in hydrology and water management with respect to water sources, flow pathways and major chemical transformations in the three years following commissioning. Results suggest that active water management practices in 2013 kept EC relatively low, with most wetland sites <1000 μS/cm with Na+ concentrations <250 mg/L. With limited management in 2014 and 2015, the EC increased in the wetland to >1000 μS/cm in 2014 and >2000 μS/cm in 2015. The most notable change was the emergence of several Na+ enriched zones in the margins. Here, Na+ concentrations were two to three times higher than other sites. Stable isotopes of water support that the Na+ enriched areas arise from underlying process-affected water in the tailings, providing evidence of its upward transport and seepage under a natural hydrologic regime. In future years, salinity is expected to evolve in its flow pathways and diffusion, yet the timeline and extent of these changes are uncertain.