Colin P. Laroque


2024

DOI bib
Radiation, Air Temperature, and Soil Water Availability Drive Tree Water Deficit Across Temporal Scales in Canada's Western Boreal Forest
Nia Perron, Jennifer L. Baltzer, Matteo Detto, Magali F. Nehemy, Christopher Spence, Gabriel Hould‐Gosselin, Haley Alcock, Bram Hadiwijaya, Colin P. Laroque, Oliver Sonnentag
Geophysical Research Letters, Volume 51, Issue 8

Abstract Changes are projected for the boreal biome with complex and variable effects on forest vegetation including drought‐induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi‐day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short‐term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability.

2023

DOI bib
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell, Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331

Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.

DOI bib
Phenological assessment of transpiration: The stem-temp approach for determining start and end of season
Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell, Magali F. Nehemy, Zoe Pierrat, Jason Maillet, Andrew D. Richardson, J. Stutz, Bruce Johnson, Warren Helgason, Alan Barr, Colin P. Laroque, Jeffrey J. McDonnell
Agricultural and Forest Meteorology, Volume 331

Field-based assessment of transpiration phenology in boreal tree species is a significant challenge. Here we develop an objective approach that uses stem radius change and its correlation with sapwood temperature to determine the timing of phenological changes in transpiration in mixed evergreen species. We test the stem-temp approach using a five year stem-radius dataset from black spruce (Picea mariana) and jack pine (Pinus banksiana) trees in Saskatchewan (2016–2020). We further compare transpiration phenological transition dates from this approach with tower-based phenological assessment from green chromatic coordinate derived from phenocam images, eddy-covariance-derived evapotranspiration and carbon uptake, tower-based measurements of solar-induced chlorophyll fluorescence and snowmelt timing. The stem-temp approach identified the start and end of four key transpiration phenological phases: (i) the end of temperature-driven cycles indicating the start of biological activity, (ii) the onset of stem rehydration, (iii) the onset of transpiration, and (iv) the end of transpiration-driven cycles. The proposed method is thus useful for characterizing the timing of changes in transpiration phenology and provides information about distinct processes that cannot be assessed with canopy-level phenological measurements alone.

2022

DOI bib
Snowmelt Water Use at Transpiration Onset: Phenology, Isotope Tracing, and Tree Water Transit Time
Magali F. Nehemy, Jason Maillet, Nia Perron, Christoforos Pappas, Oliver Sonnentag, Jennifer L. Baltzer, Colin P. Laroque, Jeffrey J. McDonnell
Water Resources Research, Volume 58, Issue 9

Studies of tree water source partitioning have primarily focused on the growing season. However, little is yet known about the source of transpiration before, during, and after snowmelt when trees rehydrate and recommence transpiration in the spring. This study investigates tree water use during spring snowmelt following tree's winter stem shrinkage. We document the source of transpiration of three boreal forest tree species—Pinus banksiana, Picea mariana, and Larix laricina—by combining observations of weekly isotopic signatures (δ18O and δ2H) of xylem, soil water, rainfall and snowmelt with measurements of soil moisture dynamics, snow depth and high-resolution temporal measurements of stem radius changes and sap flow. Our data shows that the onset of stem rehydration and transpiration overlaps with snowmelt for evergreens. During rehydration and transpiration onset, xylem water at the canopy reflected a constant pre-melt isotopic signature likely showing late fall conditions. As snowmelt infiltrates the soil and recharges the soil matrix, soil water shows a rapid isotopic shift to depleted-snowmelt water values. While there was an overlap between snowmelt and transpiration timing, xylem and soil water isotopic values did not overlap during transpiration onset. Our data showed 1–2-week delay in the shift in xylem water from pre-melt to clear snowmelt-depleted water signatures in evergreen species. This delay appears to be controlled by tree water transit time that was in the order of 9–18 days. Our study shows that snowmelt is a key source for stem rehydration and transpiration in the boreal forest during spring onset.

2021

DOI bib
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, D. R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, J. Stutz, Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, D. R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, J. Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5

The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.

DOI bib
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, D. R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, J. Stutz, Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, D. R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, J. Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5

The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.

2020

DOI bib
Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon input
Christoforos Pappas, Jason Maillet, Sharon Rakowski, Jennifer L. Baltzer, Alan Barr, T. Andrew Black, Simone Fatichi, Colin P. Laroque, Ashley M. Matheny, Alexandre Roy, Oliver Sonnentag, Tianshan Zha
Agricultural and Forest Meteorology, Volume 290

• We reconstructed time series of boreal tree growth with a biometric approach. • Aboveground tree growth was a minor and decoupled fraction of carbon input. • Partitioned estimates of tree carbon sink are valuable observational constraints. • Such observational constraints can be used for model validation and policy making. The boreal biome accounts for approximately one third of the terrestrial carbon (C) sink. However, estimates of its individual C pools remain uncertain. Here, focusing on the southern boreal forest, we quantified the magnitude and temporal dynamics of C allocation to aboveground tree growth at a mature black spruce ( Picea mariana )-dominated forest stand in Saskatchewan, Canada. We reconstructed aboveground tree biomass increments (AGBi) using a biometric approach, i.e., species-specific allometry combined with forest stand characteristics and tree ring widths collected with a C-oriented sampling design. We explored the links between boreal tree growth and ecosystem C input by comparing AGBi with eddy-covariance-derived ecosystem C fluxes from 1999 to 2015 and we synthesized our findings with a refined meta-analysis of published values of boreal forest C use efficiency (CUE). Mean AGBi at the study site was decoupled from ecosystem C input and equal to 71 ± 7 g C m –2 (1999–2015), which is only a minor fraction of gross ecosystem production (GEP; i.e., AGBi / GEP ≈ 9 %). Moreover, C allocation to AGBi remained stable over time (AGBi / GEP; –0.0001 yr –1 ; p -value=0.775), contrary to significant trends in GEP (+5.72 g C m –2 yr –2 ; p -value=0.02) and CUE (–0.0041 yr –1 , p -value=0.007). CUE was estimated as 0.50 ± 0.03 at the study area and 0.41 ± 0.12 across the reviewed boreal forests. These findings highlight the importance of belowground tree C investments, together with the substantial contribution of understory, ground cover and soil to the boreal forest C balance. Our quantitative insights into the dynamics of aboveground boreal tree C allocation offer additional observational constraints for terrestrial ecosystem models that are often biased in converting C input to biomass, and can guide forest-management strategies for mitigating carbon dioxide emissions.