Daniel L. Peters


DOI bib
Impacts of future climate on the hydrology of a northern headwaters basin and its implications for a downstream deltaic ecosystem
Prabin Rokaya, Daniel L. Peters, Mohamed Elshamy, Sujata Budhathoki, Karl–Erich Lindenschmidt
Hydrological Processes, Volume 34, Issue 7

Anthropogenic and climatic‐induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate‐ and regulation‐induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open‐water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land‐surface hydrological model to simulate hydro‐ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30‐day and 90‐day maximum flows in the Smoky River will affect open‐water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze‐up flows for the 2071–2100 period showed mixed implications for the ice‐jam flooding, which is essential for recharging high‐elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub‐basin, the sustainability of the PAD still remains uncertain.


DOI bib
Modelling the effects of climate and flow regulation on ice‐affected backwater staging in a large northern river
Prabin Rokaya, Daniel L. Peters, Barrie Bonsal, H. S. Wheater, Karl–Erich Lindenschmidt
River Research and Applications

In cold region environments, ice‐jam floods (IJFs) pose a severe risk to local communities, economies, and ecosystems. Previous studies have shown that both climate and regulation affect IJF probabilities, but their relative impacts are poorly understood. This study presents a probabilistic modelling framework that couples hydrologic and hydraulic models to assess the relative role of regulated and naturalized flows on ice‐affected backwater staging. The framework is evaluated at an IJF‐prone town on the Peace River in western Canada, which has been regulated since 1972. Naturalized flows were generated for the comparison, and ice‐affected backwater profiles were calculated along jams of varying length and location and for different combinations of model parameters and boundary conditions. Results show significant differences in backwater staging (~2 m for a return period of T = 1:10 year) between two study time periods (1973–1992 vs 1993–2012) as compared with two different hydraulic flow conditions (regulated vs naturalized), suggesting a larger role of climate than regulation in backwater staging. However, regulation was found to offset flood risk during the 1973–1992 period and exacerbate flood risk during the 1993–2012 period.