David A. Lipson


2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, Eugénie Euskirchen, Jennifer D. Watts, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, Marcin Jackowicz-Korczyński, Han Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xingyu Song, Xiaofeng Xu, Elyn Humphreys, C. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

2020

DOI bib
COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data
Ben Bond‐Lamberty, Danielle Christianson, Avni Malhotra, Stephanie Pennington, Debjani Sihi, Amir AghaKouchak, Hassan Anjileli, M. Altaf Arain, Juan J. Armestó, Samaneh Ashraf, Mioko Ataka, Dennis Baldocchi, T. Andrew Black, Nina Buchmann, Mariah S. Carbone, Shih Chieh Chang, Patrick Crill, Peter S. Curtis, Eric A. Davidson, Ankur R. Desai, John E. Drake, Tarek S. El‐Madany, Michael Gavazzi, Carolyn-Monika Görres, Christopher M. Gough, Michael L. Goulden, Jillian W. Gregg, O. Gutiérrez del Arroyo, Jin Sheng He, Takashi Hirano, Anya M. Hopple, Holly Hughes, Järvi Järveoja, Rachhpal S. Jassal, Jinshi Jian, Haiming Kan, Jason P. Kaye, Yuji Kominami, Naishen Liang, David A. Lipson, Catriona A. Macdonald, Kadmiel Maseyk, Kayla Mathes, Marguerite Mauritz, Melanie A. Mayes, Steven G. McNulty, Guofang Miao, Mirco Migliavacca, S. D. Miller, Chelcy Ford Miniat, Jennifer Goedhart Nietz, Mats Nilsson, Asko Noormets, Hamidreza Norouzi, Christine O’Connell, Bruce Osborne, Cecilio Oyonarte, Zhuo Pang, Matthias Peichl, Elise Pendall, Jorge F. Perez‐Quezada, Claire L. Phillips, Richard P. Phillips, James W. Raich, Alexandre A. Renchon, Nadine K. Ruehr, Enrique P. Sánchez‐Cañete, Matthew Saunders, K. E. Savage, Marion Schrumpf, Russell L. Scott, Ulli Seibt, Whendee L. Silver, Wu Sun, Daphne Szutu, Kentaro Takagi, Masahiro Takagi, Masaaki Teramoto, Mark G. Tjoelker, Susan E. Trumbore, Masahito Ueyama, Rodrigo Vargas, R. K. Varner, Joseph Verfaillie, Christoph S. Vogel, Jinsong Wang, G. Winston, Tana E. Wood, Juying Wu, Thomas Wutzler, Jiye Zeng, Tianshan Zha, Quan Zhang, Junliang Zou
Global Change Biology, Volume 26, Issue 12

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
Search
Co-authors
Venues