David O’Connell


DOI bib
Changes in Sedimentary Phosphorus Burial Following Artificial Eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada
David O’Connell, Nienke Ansems, Ravi Kukkadapu, Deb P. Jaisi, Diane M. Orihel, Barbara J. Cade-Menun, Yongfeng Hu, Johan A. Wiklund, Roland I. Hall, Hannah Chessell, Thilo Behrends, Philippe Van Cappellen
Journal of Geophysical Research: Biogeosciences, Volume 125, Issue 8

Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada, has been fertilized with phosphorus (P) since 1969, which resulted in a rapid transition from oligotrophic to eutrophic conditions. Sediment cores collected from the oxygenated epilimnion, and the mostly anoxic hypolimnion of this unique lake contain a historical record of the changes in sediment P speciation and burial rates across the trophic transition. To elucidate these changes, results of chemical extractions were combined with 210Pb sediment dating, and with 31P NMR, Mossbauer, and XANES spectroscopies. Prior to 1969, organic P (POrg) was the major sedimentary P sink in Lake 227. Eutrophication of the lake coincided with marked increases in the burial rate of total P (TP), as well as in the relative contribution of the NaHCO3-extractable P pool (humic-bound P, PHum). Together, PHum and POrg account for ≥70% of total P burial in the sediments deposited since artificial fertilization started. The PHum fraction likely comprises phosphate complexes with humic substances. The strong linear correlation between P and iron (Fe) extracted by NaHCO3 implies a close association of the two elements in the humic fraction. Mossbauer and XANES spectra further indicate that most Fe in the post-1969 sediments remained in the Fe (III) oxidation state, which is attributed to the stabilization of reducible Fe by organic matter, in part via the formation of phosphate-Fe (III)-humic complexes. Importantly, our results show that the eutrophication experimentation of Lake 227 caused the accumulation of a large reservoir of reactive sediment P, which may continue to fuel internal P loading to the water column once artificial fertilization is terminated.


DOI bib
Sediment phosphorus speciation and mobility under dynamic redox conditions
Christopher T. Parsons, Fereidoun Rezanezhad, David O’Connell, Philippe Van Cappellen
Biogeosciences, Volume 14, Issue 14

Abstract. Anthropogenic nutrient enrichment has caused phosphorus (P) accumulation in many freshwater sediments, raising concerns that internal loading from legacy P may delay the recovery of aquatic ecosystems suffering from eutrophication. Benthic recycling of P strongly depends on the redox regime within surficial sediment. In many shallow environments, redox conditions tend to be highly dynamic as a result of, among others, bioturbation by macrofauna, root activity, sediment resuspension and seasonal variations in bottom-water oxygen (O2) concentrations. To gain insight into the mobility and biogeochemistry of P under fluctuating redox conditions, a suspension of sediment from a hypereutrophic freshwater marsh was exposed to alternating 7-day periods of purging with air and nitrogen gas (N2), for a total duration of 74 days, in a bioreactor system. We present comprehensive data time series of bulk aqueous- and solid-phase chemistry, solid-phase phosphorus speciation and hydrolytic enzyme activities demonstrating the mass balanced redistribution of P in sediment during redox cycling. Aqueous phosphate concentrations remained low ( ∼ 2.5 µM) under oxic conditions due to sorption to iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted, the reductive dissolution of iron(III) oxyhydroxides released P. However, only 4.5 % of the released P accumulated in solution while the rest was redistributed between the MgCl2 and NaHCO3 extractable fractions of the solid phase. Thus, under the short redox fluctuations imposed in the experiments, P remobilization to the aqueous phase remained relatively limited. Orthophosphate predominated at all times during the experiment in both the solid and aqueous phase. Combined P monoesters and diesters accounted for between 9 and 16 % of sediment particulate P. Phosphatase activities up to 2.4 mmol h−1 kg−1 indicated the potential for rapid mineralization of organic P (Po), in particular during periods of aeration when the activity of phosphomonoesterases was 37 % higher than under N2 sparging. The results emphasize that the magnitude and timing of internal P loading during periods of anoxia are dependent on both P redistribution within sediments and bottom-water nitrate concentrations.