Donatella Zona


2023

DOI bib
Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence
Rui Cheng, Troy S. Magney, Erica L Orcutt, Zoe Pierrat, Philipp Köhler, David R. Bowling, M. Syndonia Bret‐Harte, Eugénie Euskirchen, Martin Jung, Hideki Kobayashi, A. V. Rocha, Oliver Sonnentag, Jochen Stutz, Sophia Walther, Donatella Zona, Christian Frankenberg
Environmental Research Letters, Volume 17, Issue 11

Abstract Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part of the global carbon cycle. Solar-induced chlorophyll Fluorescence (SIF), a promising proxy for photosynthesis with physiological insight, has been used to track gross primary production (GPP) at regional scales. Recent studies have constructed empirical relationships between SIF and eddy covariance-derived GPP as a first step to predicting global GPP. However, high latitudes pose two specific challenges: (a) Unique plant species and land cover types in the Arctic–Boreal region are not included in the generalized SIF-GPP relationship from lower latitudes, and (b) the complex terrain and sub-pixel land cover further complicate the interpretation of the SIF-GPP relationship. In this study, we focused on the Arctic-Boreal vulnerability experiment (ABoVE) domain and evaluated the empirical relationships between SIF for high latitudes from the TROPOspheric Monitoring Instrument (TROPOMI) and a state-of-the-art machine learning GPP product (FluxCom). For the first time, we report the regression slope, linear correlation coefficient, and the goodness of the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive spatial coverage. We found several potential issues specific to the Arctic-Boreal region that should be considered: (a) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale; (b) changing biomass distribution and SIF-GPP relationship along elevational gradients, and (c) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Taken together, our results will help improve the estimation of GPP using SIF in terrestrial biosphere models and cope with model-data uncertainties in the Arctic-Boreal region.

DOI bib
Carbon uptake in Eurasian boreal forests dominates the high‐latitude net ecosystem carbon budget
Jennifer D. Watts, Mary Farina, John S. Kimball, Luke Schiferl, Zhihua Liu, Kyle A. Arndt, Donatella Zona, Ashley P. Ballantyne, Eugénie Euskirchen, Frans-Jan W. Parmentier, Manuel Helbig, Oliver Sonnentag, Torbern Tagesson, Janne Rinne, Hiroki Ikawa, Masahito Ueyama, Hideki Kobayashi, Torsten Sachs, Daniel F. Nadeau, John Kochendorfer, Marcin Jackowicz-Korczyński, Anna‐Maria Virkkala, Mika Aurela, R. Commane, Brendan Byrne, Leah Birch, Matthew S. Johnson, Nima Madani, Brendan M. Rogers, Jinyang Du, Arthur Endsley, K. E. Savage, B. Poulter, Zhen Zhang, L. Bruhwiler, Charles E. Miller, Scott J. Goetz, Walter C. Oechel
Global Change Biology, Volume 29, Issue 7

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.

DOI bib
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A.J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Global Change Biology, Volume 29, Issue 5

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.

2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, Eugénie Euskirchen, Jennifer D. Watts, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, Marcin Jackowicz-Korczyński, Han Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xingyu Song, Xiaofeng Xu, Elyn Humphreys, C. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

DOI bib
The ABCflux database: Arctic–boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, K. E. Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, D. L. Peter, C. Minions, Julia Nojeim, R. Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroyasu Iwata, Hideki Kobayashi, Pasi Kolari, Efrèn López‐Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans‐Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret‐Harte, Sigrid Dengel, Han Dolman, C. Edgar, Bo Elberling, Eugénie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yukiko Matsuura, Gesa Meyer, Mats Nilsson, Steven F. Oberbauer, Sang Jong Park, Roman E. Petrov, А. С. Прокушкин, Christopher Schulze, Vincent L. St. Louis, Eeva‐Stiina Tuittila, Juha‐Pekka Tuovinen, William L. Quinton, Andrej Varlagin, Donatella Zona, Viacheslav I. Zyryanov
Earth System Science Data, Volume 14, Issue 1

Abstract. Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).

DOI bib
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Kunxiaojia Yuan, Qing Zhu, Fa Li, William J. Riley, M. S. Torn, Housen Chu, Gavin McNicol, Min Chen, Sara Knox, Kyle Delwiche, Huayi Wu, Dennis Baldocchi, Hengbo Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva‐Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, Eugénie Euskirchen, Eric J. Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroyasu Iwata, Jordan P. Goodrich, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 324

Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal relationships in predictive models significantly improved model performance. More importantly, modeled CH4 emissions differed by up to a factor of 4 under a +1°C warming scenario when causality constraints were considered. These results highlight the significant role of causality in modeling wetland CH4 emissions especially under future warming conditions, while traditional data-driven ML models may reproduce observations for the wrong reasons. Our proposed causality-guided model could benefit predictive modeling, large-scale upscaling, data gap-filling, and surrogate modeling of wetland CH4 emissions within earth system land models.

DOI bib
Permafrost Landscape History Shapes Fluvial Chemistry, Ecosystem Carbon Balance, and Potential Trajectories of Future Change
Scott Zolkos, Suzanne E. Tank, Steven V. Kokelj, Robert G. Striegl, Sarah Shakil, Carolina Voigt, Oliver Sonnentag, William L. Quinton, Edward A. G. Schuur, Donatella Zona, Peter M. Lafleur, Ryan C. Sullivan, Masahito Ueyama, David P. Billesbach, David Cook, Elyn Humphreys, Philip Marsh
Global Biogeochemical Cycles, Volume 36, Issue 9

Abstract Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice‐rich moraine, and organic‐rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO 2 (25%) dominated. In watersheds affected by thaw‐induced mass wasting, erosion of ice‐rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw‐induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw‐induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance.

2021

DOI bib
FLUXNET-CH<sub>4</sub>: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
Kyle Delwiche, Sara Knox, Avni Malhotra, Etienne Fluet‐Chouinard, Gavin McNicol, Sarah Féron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugénie Euskirchen, D. Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Y. Hollinger, Lukas Hörtnagl, Hiroyasu Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John S. King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y.F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim C. Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Kaori Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William J. Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey‐Sánchez, Edward A. G. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne Szutu, Jonathan E. Thom, M. S. Torn, Eeva‐Stiina Tuittila, J. Turner, Masahito Ueyama, Alex Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vázquez‐Lule, Joseph Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Earth System Science Data, Volume 13, Issue 7

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.

DOI bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang, William J. Riley, Sara Knox, Robert B. Jackson, Gavin McNicol, Benjamin Poulter, Mika Aurela, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Alessandro Cescatti, Housen Chu, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Thomas Friborg, Mathias Goeckede, Manuel Helbig, Kyle S. Hemes, Takashi Hirano, Hiroyasu Iwata, Minseok Kang, Trevor F. Keenan, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Bhaskar Mitra, Akira Miyata, Mats Nilsson, Asko Noormets, Walter C. Oechel, Dario Papale, Matthias Peichl, Michele L. Reba, Janne Rinne, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Karina V. R. Schäfer, Hans Peter Schmid, Narasinha Shurpali, Oliver Sonnentag, Angela C. I. Tang, M. S. Torn, Carlo Trotta, Eeva‐Stiina Tuittila, Masahito Ueyama, Rodrigo Vargas, Timo Vesala, Lisamarie Windham‐Myers, Zhen Zhang, Donatella Zona
Nature Communications, Volume 12, Issue 1

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.

DOI bib
Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands
Jeremy Irvin, Sharon Zhou, Gavin McNicol, Fred Lu, Vincent Liu, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Antje Lucas-Moffat, Carlo Trotta, Dario Papale, Domenico Vitale, Ivan Mammarella, Pavel Alekseychik, Mika Aurela, Anand Avati, Dennis Baldocchi, Sheel Bansal, Gil Bohrer, David I. Campbell, Jiquan Chen, Housen Chu, Higo J. Dalmagro, Kyle Delwiche, Ankur R. Desai, Eugénie Euskirchen, Sarah Féron, Mathias Goeckede, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, Hiroyasu Iwata, Gerald Jurasinski, Aram Kalhori, Andrew Kondrich, Derrick Y.F. Lai, Annalea Lohila, Avni Malhotra, Lutz Merbold, Bhaskar Mitra, Andrew Y. Ng, Mats Nilsson, Asko Noormets, Matthias Peichl, Camilo Rey‐Sánchez, Andrew D. Richardson, Benjamin R. K. Runkle, Karina V. R. Schäfer, Oliver Sonnentag, Ellen Stuart-Haëntjens, Cove Sturtevant, Masahito Ueyama, Alex Valach, Rodrigo Vargas, George L. Vourlitis, Eric J. Ward, Guan Xhuan Wong, Donatella Zona, Ma. Carmelita R. Alberto, David P. Billesbach, Gerardo Celis, Han Dolman, Thomas Friborg, Kathrin Fuchs, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Lukas Hörtnagl, Adrien Jacotot, Franziska Koebsch, Kuno Kasak, Regine Maier, Timothy H. Morin, Eiko Nemitz, Walter C. Oechel, Patricia Y. Oikawa, Kaori Ono, Torsten Sachs, Ayaka Sakabe, Edward A. G. Schuur, Robert Shortt, Ryan C. Sullivan, Daphne Szutu, Eeva‐Stiina Tuittila, Andrej Varlagin, Joeseph G. Verfaillie, Christian Wille, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson
Agricultural and Forest Meteorology, Volume 308-309

• We evaluate methane flux gap-filling methods across 17 boreal-to-tropical wetlands • New methods for generating realistic artificial gaps and uncertainties are proposed • Decision tree algorithms perform slightly better than neural networks on average • Soil temperature and generic seasonality are the most important predictors • Open-source code is released for gap-filling steps and uncertainty evaluation Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).

DOI bib
Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties
Anna‐Maria Virkkala, Juha Aalto, Brendan M. Rogers, Torbern Tagesson, Claire C. Treat, Susan M. Natali, Jennifer D. Watts, Stefano Potter, Aleksi Lehtonen, Marguerite Mauritz, Edward A. G. Schuur, John Kochendorfer, Donatella Zona, Walter C. Oechel, Hideki Kobayashi, Elyn Humphreys, Mathias Goeckede, Hiroyasu Iwata, Peter M. Lafleur, Eugénie Euskirchen, Stef Bokhorst, Maija E. Marushchak, Pertti J. Martikainen, Bo Elberling, Carolina Voigt, Christina Biasi, Oliver Sonnentag, Frans‐Jan W. Parmentier, Masahito Ueyama, Gerardo Celis, Vincent L. St. Louis, Craig A. Emmerton, Matthias Peichl, Jinshu Chi, Järvi Järveoja, Mats Nilsson, Steven F. Oberbauer, M. S. Torn, Sang Jong Park, Han Dolman, Ivan Mammarella, Namyi Chae, Rafael Poyatos, Efrèn López‐Blanco, Torben R. Christensen, Mi Hye Kwon, Torsten Sachs, David Holl, Miska Luoto
Global Change Biology, Volume 27, Issue 17

The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.

DOI bib
Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada
Jennifer D. Watts, Susan M. Natali, C. Minions, D. A. Risk, Kyle A. Arndt, Donatella Zona, Eugénie Euskirchen, A. V. Rocha, Oliver Sonnentag, Manuel Helbig, Aram Kalhori, W. C. Oechel, Hiroki Ikawa, Masahito Ueyama, Rikie Suzuki, Hideki Kobayashi, Gerardo Celis, Edward A. G. Schuur, Elyn Humphreys, Yongwon Kim, Bang‐Yong Lee, Scott J. Goetz, Nima Madani, Luke Schiferl, R. Commane, John S. Kimball, Zhihua Liu, M. S. Torn, Stefano Potter, Jonathan Wang, M. Torre Jorgenson, Jingfeng Xiao, Xing Li, C. Edgar
Environmental Research Letters, Volume 16, Issue 8

Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO 2 ) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO 2 flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO 2 database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO 2 –C m −2 d −1 ) relative to tundra (0.94 ± 0.4 g CO 2 –C m −2 d −1 ). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO 2 –C m −2 d −1 ; tundra: 0.18 ± 0.16 g CO 2 –C m −2 d −1 ) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO 2 –C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO 2 to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

DOI bib
Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Lucas-Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 8, Issue 1

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00851-9.

DOI bib
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu, Xiangzhong Luo, Zutao Ouyang, Wai-Yin Stephen Chan, Sigrid Dengel, Sébastien Biraud, M. S. Torn, Stefan Metzger, Jitendra Kumar, M. Altaf Arain, T. J. Arkebauer, Dennis Baldocchi, Carl J. Bernacchi, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Rosvel Bracho, Scott Brown, Nathaniel A. Brunsell, Jiquan Chen, Xingyuan Chen, Kenneth L. Clark, Ankur R. Desai, Tomer Duman, David Durden, Silvano Fares, Inke Forbrich, John A. Gamon, Christopher M. Gough, Timothy J. Griffis, Manuel Helbig, David Y. Hollinger, Elyn Humphreys, Hiroki Ikawa, Hiroyasu Iwata, Yang Ju, John F. Knowles, Sara Knox, Hideki Kobayashi, Thomas E. Kolb, Beverly E. Law, Xuhui Lee, M. E. Litvak, Heping Li, J. William Munger, Asko Noormets, Kim Novick, Steven F. Oberbauer, Walter C. Oechel, Patricia Y. Oikawa, S. A. Papuga, Elise Pendall, Prajaya Prajapati, John H. Prueger, William L. Quinton, Andrew D. Richardson, Eric S. Russell, Russell L. Scott, Gregory Starr, R. M. Staebler, Paul C. Stoy, Ellen Stuart-Haëntjens, Oliver Sonnentag, Ryan C. Sullivan, Andy Suyker, Masahito Ueyama, Rodrigo Vargas, J. D. Wood, Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302

• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.

2020

DOI bib
Attribute parameter characterized the seasonal variation of gross primary productivity (αGPP): Spatiotemporal variation and influencing factors
Weikang Zhang, Guirui Yu, Zhi Chen, Leiming Zhang, Qiufeng Wang, Yangjian Zhang, Honglin He, Lang Han, Shiping Chen, Shijie Han, Yingnian Li, Liqing Sha, Peili Shi, Huimin Wang, Yanfen Wang, Wenhua Xiang, Junhua Yan, Yiping Zhang, Donatella Zona, M. Altaf Arain, Trofim C. Maximov, Walter C. Oechel, Yukio Kosugi
Agricultural and Forest Meteorology, Volume 280

Abstract The seasonal dynamic of gross primary productivity (GPP) has influences on the annual GPP (AGPP) of the terrestrial ecosystem. However, the spatiotemporal variation of the seasonal dynamic of GPP and its effects on spatial and temporal variations of AGPP are still poorly addressed. In this study, we developed a parameter, αGPP, defined as the ratio of mean daily GPP (GPPmean) to the maximum daily GPP (GPPmax) during the growing season, to analyze the seasonal dynamic of GPP based on Weibull function. The αGPP was a comprehensive parameter characterizing the shape, scale, and location of the seasonal dynamic curve of GPP. We calculated αGPP based on the data of GPP for 942 site-years from 115 flux sites in the Northern Hemisphere, and analyzed the spatiotemporal variation and influencing factors of the αGPP. We found that the αGPP of terrestrial ecosystems in the Northern Hemisphere ranged from 0.47 to 0.85, with an average of 0.62 ± 0.06. The αGPP varied significantly both among different climatic zones and different ecosystem types. The αGPP was stable on the interannual scale, while decreased as latitude increased, which was consistent across different ecosystem types. The spatial pattern of the seasonal dynamic of astronomical radiation was the dominating factor of the spatial pattern of αGPP, that was, the spatial pattern of the seasonal dynamic of astronomical radiation determined that of the seasonal dynamic of GPP by controlling that of seasonal dynamics of total radiation and temperature. In addition, we assessed the spatial variation of AGPP preliminarily based on αGPP and other seasonal dynamic parameters of GPP, indicating that the understanding of the spatiotemporal variation of αGPP could provide a new approach for studying the spatial and temporal variations of AGPP and estimating AGPP based on the seasonal dynamic of GPP.

DOI bib
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
Gilberto Pastorello, Carlo Trotta, Eleonora Canfora, Housen Chu, Danielle Christianson, You-Wei Cheah, C. Poindexter, Jiquan Chen, Abdelrahman Elbashandy, Marty Humphrey, Peter Isaac, Diego Polidori, Markus Reichstein, Alessio Ribeca, Catharine van Ingen, Nicolas Vuichard, Leiming Zhang, B.D. Amiro, Christof Ammann, M. Altaf Arain, Jonas Ardö, Timothy J. Arkebauer, Stefan K. Arndt, Nicola Arriga, Marc Aubinet, Mika Aurela, Dennis Baldocchi, Alan Barr, Eric Beamesderfer, Luca Belelli Marchesini, Onil Bergeron, Jason Beringer, Christian Bernhofer, Daniel Berveiller, D. P. Billesbach, T. Andrew Black, Peter D. Blanken, Gil Bohrer, Julia Boike, Paul V. Bolstad, Damien Bonal, Jean-Marc Bonnefond, David R. Bowling, Rosvel Bracho, Jason Brodeur, Christian Brümmer, Nina Buchmann, Benoît Burban, Sean P. Burns, Pauline Buysse, Peter Cale, M. Cavagna, Pierre Cellier, Shiping Chen, Isaac Chini, Torben R. Christensen, James Cleverly, Alessio Collalti, Claudia Consalvo, Bruce D. Cook, David Cook, Carole Coursolle, Edoardo Cremonese, Peter S. Curtis, Ettore D’Andrea, Humberto da Rocha, Xiaoqin Dai, Kenneth J. Davis, Bruno De Cinti, A. de Grandcourt, Anne De Ligne, Raimundo Cosme de Oliveira, Nicolas Delpierre, Ankur R. Desai, Carlos Marcelo Di Bella, Paul Di Tommasi, Han Dolman, Francisco Domingo, Gang Dong, Sabina Dore, Pierpaolo Duce, Éric Dufrêne, Allison L. Dunn, J.T. Dusek, Derek Eamus, Uwe Eichelmann, Hatim Abdalla M. ElKhidir, Werner Eugster, Cäcilia Ewenz, B. E. Ewers, D. Famulari, Silvano Fares, Iris Feigenwinter, Andrew Feitz, Rasmus Fensholt, Gianluca Filippa, M. L. Fischer, J. M. Frank, Marta Galvagno, Mana Gharun, Damiano Gianelle, Bert Gielen, Beniamino Gioli, Anatoly A. Gitelson, Ignacio Goded, Mathias Goeckede, Allen H. Goldstein, Christopher M. Gough, Michael L. Goulden, Alexander Graf, Anne Griebel, Carsten Gruening, Thomas Grünwald, Albin Hammerle, Shijie Han, Xingguo Han, Birger Ulf Hansen, Chad Hanson, Juha Hatakka, Yongtao He, Markus Hehn, Bernard Heinesch, Nina Hinko‐Najera, Lukas Hörtnagl, Lindsay B. Hutley, Andreas Ibrom, Hiroki Ikawa, Marcin Jackowicz-Korczyński, Dalibor Janouš, W.W.P. Jans, Rachhpal S. Jassal, Shicheng Jiang, Tomomichi Kato, Myroslava Khomik, Janina Klatt, Alexander Knohl, Sara Knox, Hideki Kobayashi, Georgia R. Koerber, Olaf Kolle, Yukio Kosugi, Ayumi Kotani, Andrew S. Kowalski, Bart Kruijt, Juliya Kurbatova, Werner L. Kutsch, Hyojung Kwon, Samuli Launiainen, Tuomas Laurila, B. E. Law, R. Leuning, Yingnian Li, Michael J. Liddell, Jean‐Marc Limousin, Marryanna Lion, Adam Liska, Annalea Lohila, Ana López‐Ballesteros, Efrèn López‐Blanco, Benjamin Loubet, Denis Loustau, Antje Maria Moffat, Johannes Lüers, Siyan Ma, Craig Macfarlane, Vincenzo Magliulo, Regine Maier, Ivan Mammarella, Giovanni Manca, Barbara Marcolla, Hank A. Margolis, Serena Marras, W. J. Massman, Mikhail Mastepanov, Roser Matamala, Jaclyn Hatala Matthes, Francesco Mazzenga, Harry McCaughey, Ian McHugh, Andrew M. S. McMillan, Lutz Merbold, Wayne S. Meyer, Tilden P. Meyers, S. D. Miller, Stefano Minerbi, Uta Moderow, Russell K. Monson, Leonardo Montagnani, Caitlin E. Moore, Eddy Moors, Virginie Moreaux, Christine Moureaux, J. William Munger, T. Nakai, Johan Neirynck, Zoran Nesic, Giacomo Nicolini, Asko Noormets, Matthew Northwood, Marcelo D. Nosetto, Yann Nouvellon, Kimberly A. Novick, W. C. Oechel, Jørgen E. Olesen, Jean‐Marc Ourcival, S. A. Papuga, Frans‐Jan W. Parmentier, Eugénie Paul‐Limoges, Marián Pavelka, Matthias Peichl, Elise Pendall, Richard P. Phillips, Kim Pilegaard, Norbert Pirk, Gabriela Posse, Thomas L. Powell, Heiko Prasse, Suzanne M. Prober, Serge Rambal, Üllar Rannik, Naama Raz‐Yaseef, Corinna Rebmann, David E. Reed, Víctor Resco de Dios, Natalia Restrepo‐Coupe, Borja R. Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, S. R. Saleska, Enrique P. Sánchez-Cañete, Zulia Mayari Sánchez-Mejía, Hans Peter Schmid, Marius Schmidt, Karl Schneider, Frederik Schrader, Ivan Schroder, Russell L. Scott, Pavel Sedlák, Penélope Serrano-Ortíz, Changliang Shao, Peili Shi, Ivan Shironya, Lukas Siebicke, Ladislav Šigut, Richard Silberstein, Costantino Sirca, Donatella Spano, R. Steinbrecher, Robert M. Stevens, Cove Sturtevant, Andy Suyker, Torbern Tagesson, Satoru Takanashi, Yanhong Tang, Nigel Tapper, Jonathan E. Thom, Michele Tomassucci, Juha‐Pekka Tuovinen, S. P. Urbanski, Р. Валентини, M. K. van der Molen, Eva van Gorsel, J. van Huissteden, Andrej Varlagin, Joe Verfaillie, Timo Vesala, Caroline Vincke, Domenico Vitale, N. N. Vygodskaya, Jeffrey P. Walker, Elizabeth A. Walter‐Shea, Huimin Wang, R. J. Weber, Sebastian Westermann, Christian Wille, Steven C. Wofsy, Georg Wohlfahrt, Sebastian Wolf, William Woodgate, Yuelin Li, Roberto Zampedri, Junhui Zhang, Guoyi Zhou, Donatella Zona, D. Agarwal, Sébastien Biraud, M. S. Torn, Dario Papale
Scientific Data, Volume 7, Issue 1

Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

2019

DOI bib
Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition
Zhi Hua Liu, John S. Kimball, Nicholas C. Parazoo, Ashley P. Ballantyne, Wen J. Wang, Nima Madani, Caleb G. Pan, Jennifer D. Watts, Rolf H. Reichle, Oliver Sonnentag, Philip Marsh, Miriam Hurkuck, Manuel Helbig, William L. Quinton, Donatella Zona, Masahito Ueyama, Hideki Kobayashi, Eugénie Euskirchen
Global Change Biology, Volume 26, Issue 2

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.

DOI bib
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali, Jennifer D. Watts, Brendan M. Rogers, Stefano Potter, S. Ludwig, A. K. Selbmann, Patrick F. Sullivan, Benjamin W. Abbott, Kyle A. Arndt, Leah Birch, Mats Björkman, A. Anthony Bloom, Gerardo Celis, Torben R. Christensen, Casper T. Christiansen, R. Commane, Elisabeth J. Cooper, Patrick Crill, C. I. Czimczik, S. P. Davydov, Jinyang Du, Jocelyn Egan, Bo Elberling, Eugénie Euskirchen, Thomas Friborg, Hélène Genet, Mathias Göckede, Jordan P. Goodrich, Paul Grogan, Manuel Helbig, Elchin Jafarov, Julie Jastrow, Aram Kalhori, Yongwon Kim, John S. Kimball, Lars Kutzbach, Mark J. Lara, Klaus Steenberg Larsen, Bang Yong Lee, Zhihua Liu, M. M. Loranty, Magnus Lund, Massimo Lupascu, Nima Madani, Avni Malhotra, Roser Matamala, J. W. Mcfarland, A. David McGuire, Anders Michelsen, C. Minions, Walter C. Oechel, David Olefeldt, Frans‐Jan W. Parmentier, Norbert Pirk, Benjamin Poulter, William L. Quinton, Fereidoun Rezanezhad, David Risk, Torsten Sachs, Kevin Schaefer, Niels Martin Schmidt, Edward A. G. Schuur, Philipp Semenchuk, Gaius R. Shaver, Oliver Sonnentag, Gregory Starr, Claire C. Treat, Mark P. Waldrop, Yihui Wang, Jeffrey M. Welker, Christian Wille, Xiaofeng Xu, Zhen Zhang, Qianlai Zhuang, Donatella Zona
Nature Climate Change, Volume 9, Issue 11

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

DOI bib
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan H. Chojnicki, Ankur R. Desai, Han Dolman, Eugénie Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats Nilsson, Walter C. Oechel, Matthias Peichl, Thomas G. Pypker, William L. Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, Tuula Aalto
Earth System Science Data, Volume 11, Issue 3

Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
Search
Co-authors
Venues