Douglas R. Smith


2022

DOI bib
Addressing conservation practice limitations and trade‐offs for reducing phosphorus loss from agricultural fields
Peter J. A. Kleinman, Deanna L. Osmond, Laura E. Christianson, Don Flaten, James A. Ippolito, Helen P. Jarvie, Jason P. Kaye, Kevin W. King, April B. Leytem, Joshua M. McGrath, Nathan O. Nelson, Amy L. Shober, Douglas R. Smith, K. W. Staver, Andrew N. Sharpley
Agricultural & Environmental Letters, Volume 7, Issue 2

Conservation practices that reduce nutrient and soil loss from agricultural lands to water are fundamental to watershed management programs. Avoiding trade-offs of conservation practices is essential to the successful mitigation of watershed phosphorus (P) losses. We review documented trade-offs associated with conservation practices, particularly those practices that are intended to control and trap P from agricultural sources. A regular theme is the trade-off between controlling P loss linked to sediment while increasing dissolved P losses (no-till, cover crops, vegetated buffers, constructed wetlands, sediment control basins). A variety of factors influence the degree to which these trade-offs occur, complicated by their interaction and uncertainties associated with climate change. However, acknowledging these trade-offs and anticipating their contribution to watershed outcomes are essential to the sustainability of conservation systems.

2019

DOI bib
The Latitudes, Attitudes, and Platitudes of Watershed Phosphorus Management in North America
Douglas R. Smith, Merrin L. Macrae, Peter J. A. Kleinman, Helen P. Jarvie, Kevin W. King, Ray B. Bryant
Journal of Environmental Quality, Volume 48, Issue 5

Phosphorus (P) plays a crucial role in agriculture as a primary fertilizer nutrient-and as a cause of the eutrophication of surface waters. Despite decades of efforts to keep P on agricultural fields and reduce losses to waterways, frequent algal blooms persist, triggering not only ecological disruption but also economic, social, and political consequences. We investigate historical and persistent factors affecting agricultural P mitigation in a transect of major watersheds across North America: Lake Winnipeg, Lake Erie, the Chesapeake Bay, and Lake Okeechobee/Everglades. These water bodies span 26 degrees of latitude, from the cold climate of central Canada to the subtropics of the southeastern United States. These water bodies and their associated watersheds have tracked trajectories of P mitigation that manifest remarkable similarities, and all have faced challenges in the application of science to agricultural management that continue to this day. An evolution of knowledge and experience in watershed P mitigation calls into question uniform solutions as well as efforts to transfer strategies from other arenas. As a result, there is a need to admit to shortcomings of past approaches, plotting a future for watershed P mitigation that accepts the sometimes two-sided nature of Hennig Brandt's "Devil's Element."

2018

DOI bib
Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators
T. Q. Zhang, Zhiming Zheng, Rattan Lal, Ziyan Lin, Andrew N. Sharpley, Amy L. Shober, Douglas R. Smith, C. S. Tan, Philippe Van Cappellen
Journal of Environmental Quality, Volume 47, Issue 2

Environmental indicators are powerful tools for tracking environmental changes, measuring environmental performance, and informing policymakers. Many diverse environmental indicators, including agricultural environmental indicators, are currently in use or being developed. This special collection of technical papers expands on the peer-reviewed literature on environmental indicators and their application to important current issues in the following areas: (i) model-derived indicators to indicate phosphorus losses from arable land to surface runoff and subsurface drainage, (ii) glutathione-ascorbate cycle-related antioxidants as early-warning bioindicators of polybrominated diphenyl ether toxicity in mangroves, and (iii) assessing the effectiveness of using organic matrix biobeds to limit herbicide dissipation from agricultural fields, thereby controlling on-farm point-source pollution. This introductory review also provides an overview of environmental indicators, mainly for agriculture, with examples related to the quality of the agricultural soil-water-air continuum and the application of model-derived indicators. Current knowledge gaps and future lines of investigation are also discussed. It appears that environmental indicators, particularly those for agriculture, work efficiently at the field, catchment, and local scales and serve as valuable metrics of system functioning and response; however, these indicators need to be refined or further developed to comprehensively meet community expectations in terms of providing a consistent picture of relevant issues and/or allowing comparisons to be made nationally or internationally.