Egina Malaj


2022

DOI bib
Increased reliance on insecticide applications in <scp>C</scp> anada linked to simplified agricultural landscapes
Egina Malaj, Christy A. Morrissey
Ecological Applications, Volume 32, Issue 3

Intensification of agriculture and increased insecticide use have been implicated in global losses of farmland biodiversity and ecosystem services. We hypothesized that increased insecticide applications (proportion of area treated with insecticides) in Canada's expansive agricultural landscapes are due, in part, to shifts toward more simplified landscapes. To assess this relationship, we analyzed data from the Canadian Census of Agriculture spanning 20 years including five census periods (1996-2016) and across 225 census units within the four major agricultural regions of Pacific, Prairie, Central, and Atlantic Canada. Generalized mixed effects models were used to evaluate if changes in landscape simplification - defined as the proportion of farmland in crops (cereals, oilseeds, pulses and fruit/vegetables) - alongside other farming and climatic variables, influenced insecticide applications over time. Bayesian spatial-temporal models were further used to estimate the strength of the relationship with landscape simplification over time. We found that landscape simplification increased in 89% and insecticide applications increased in 70% of the Census Division spatial units during the 1996-2016 period. Nationally, significant increases in landscape simplification were observed in the two most agriculturally intensive regions of Prairie (from 55% to 63%) and Central (from 51% to 60%) Canada. For both regions, landscape simplification was a strong and significant predictor of higher insecticide applications, even after accounting for other factors such as climate, farm economics, farm size and land use practices (e.g., area in cash crops and tillage). If current trends continue, we estimated that insecticide applications will increase another 10%-20% by 2036 as a result of landscape simplification alone. To avoid increased reliance on toxic insecticides, agri-environmental policies need to consider that losing diverse natural habitat can increase insect pest pressure and resistance with negative environmental consequences extending beyond the field.

2020

DOI bib
Spatial distribution of agricultural pesticide use and predicted wetland exposure in the Canadian Prairie Pothole Region
Egina Malaj, Karsten Liber, Christy A. Morrissey
Science of The Total Environment, Volume 718

Agricultural pest control products are a major cause of degradation of water quality and biodiversity loss worldwide. In the Canadian Prairie Pothole Region, the landscape is characterized by millions of ecologically important wetlands, but also large farm sizes and high agrochemical use. Despite the region's agricultural intensity, the spatial extent of pesticide use and likelihood of pesticides contaminating surface water has been poorly studied. Here, we estimated the pesticide use patterns for three main groups (herbicides, fungicides and insecticides) using the most recent (2015) pesticide use survey data and digital crop maps. Furthermore, we developed a Wetland Pesticide Occurrence Index (WPOI; 1 km2 resolution), to robustly estimate potential wetland exposure using spatially explicit data on pesticide use density, wetland density, precipitation and pesticide-specific physicochemical properties. In total, 39,236 metric tonnes of pesticides consisting of 94 active ingredients were applied to the Prairies in 2015. Herbicides had the highest density of use (24-183 kg/km2), followed by fungicides (0.4-23.8 kg/km2) and insecticides (0.4-3.6 kg/km2). Pesticide use differed by province; however, the major pesticides applied (e.g., glyphosate, prothioconazole, and thiamethoxam) were consistent across the region and were largely associated with wheat and canola crops. Although insecticides and fungicides had lower mass applied than herbicides, they had slightly higher overall WPOI scores. The predicted pesticide occurrence for insecticides and fungicides in wetlands was higher in the wetter central and eastern part of the Prairie region (WPOI = 0.6-1) compared to the drier western and southwestern part (WPOI = 0.1-0.6), suggesting that wetlands in much of Saskatchewan and southern Manitoba may be more vulnerable to higher and frequent contamination. Identifying crops, chemicals and landscapes with the greatest likelihood of pesticide contamination to wetlands will help prioritize future environmental monitoring programs and aid in assessing the ecological risk of specific pest control products in Canada's most agriculturally intensive region.

DOI bib
Spatio-Temporal Patterns of Crops and Agrochemicals in Canada Over 35 Years
Egina Malaj, Levi Freistadt, Christy A. Morrissey
Frontiers in Environmental Science, Volume 8

In an effort to feed a growing world population, agriculture has rapidly intensified over the last six decades, relying heavily on agrochemicals (fertilizers, insecticides, fungicides, and herbicides) to increase and maintain desired crop yields. Despite environmental concerns in Canada’s agricultural regions, long-term patterns of crop change and the associated trends in the proportion of cropland treated with agrochemicals are poorly documented. Using the Canadian Census of Agriculture, we compiled historical data over 35 years (8 census periods: 1981-2016) on agrochemical applications measured as the proportion of cropland treated with pesticides and fertilizers and the associated crop classes to identify and interpret spatial and temporal trends in Canada’s agricultural practices across 260 census units. Due to differences in agricultural practices, soil and climatic conditions across the country, the Pacific (British Columbia), Prairie (Alberta, Saskatchewan, Manitoba), Central (Ontario, Quebec), and Atlantic (Nova Scotia, New Brunswick, Newfoundland/Labrador, Prince Edward Island) regions were analyzed separately. Most of the agrochemicals in Canada were applied in the Prairie and Central regions, which combined comprise 97% of the total cropland. Fertilizers were the dominant agrochemicals across Canada applied on 48% (Pacific) to 78% (Prairie) of the total cropland area, followed by herbicides, which were applied on 30% (Pacific) to 81% (Prairie) of the total cropland area in 2016. Notably, we observed significant changes between 1996 and 2016 in area treated with fungicides and insecticides, which increased by 412% and 50% in the Prairie region and by 291% and 149% in the Central region, respectively. The proportion and distribution of crops shifted in favour of more oilseeds and soybeans in the most intensive Prairie and Central regions, whereas cereals decreased over the same time period. Our analysis of past and current trends of agrochemicals and cropping patterns within Canada indicates a rapid and systemic increase in chemical use, and policies that promote a shift toward lower chemical reliance through sustainable agricultural practices are urgently needed.