Elodie Passeport


2023

DOI bib
Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export
Bowen Zhou, Mahyar Shafii, Chris T. Parsons, Elodie Passeport, Fereidoun Rezanezhad, Ariel Lisogorsky, Philippe Van Cappellen, Bowen Zhou, Mahyar Shafii, Chris T. Parsons, Elodie Passeport, Fereidoun Rezanezhad, Ariel Lisogorsky, Philippe Van Cappellen
Science of The Total Environment, Volume 876

Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.

DOI bib
Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export
Bowen Zhou, Mahyar Shafii, Chris T. Parsons, Elodie Passeport, Fereidoun Rezanezhad, Ariel Lisogorsky, Philippe Van Cappellen, Bowen Zhou, Mahyar Shafii, Chris T. Parsons, Elodie Passeport, Fereidoun Rezanezhad, Ariel Lisogorsky, Philippe Van Cappellen
Science of The Total Environment, Volume 876

Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.

2019

DOI bib
Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal
Brenden Ding, Fereidoun Rezanezhad, Behrad Gharedaghloo, Philippe Van Cappellen, Elodie Passeport
Science of The Total Environment, Volume 649

Bioretention cells are a popular control strategy for stormwater volume and quality, but their efficiency for water infiltration and nutrient removal under cold climate conditions has been poorly studied. In this work, soil cores were collected from an active bioretention cell containing engineered soil material amended with a phosphate sorbent medium. The cores were used in laboratory column experiments conducted to obtain a detailed characterization of the soil's bioretention performance during six consecutive freeze-thaw cycles (FTCs, from -10 to +10 °C). At the start of each FTC, the experimental column undergoing the FTCs and a control column kept at room temperature were supplied with a solution containing 25 mg/L of bromide, nitrate and phosphate. Water saturated conditions were established to mimic the presence of an internal water storage zone to support anaerobic nitrate removal. At the end of each FTC, the pore solution was allowed to drain from the columns. The results indicate that the FTCs enhanced the infiltration efficiency of the soil: with each successive cycle the drainage rate increased in the experimental column. Freezing and thawing also increased the saturated hydraulic conductivity of the bioretention soil. X-ray tomography imaging identified a key role of macro-pore formation in maintaining high infiltration rates. Both aqueous nitrate and phosphate supplied to the columns were nearly completely removed from solution. Sufficiently long retention times and the presence of the internal water storage zone promoted anaerobic nitrate elimination despite the low temperatures. Dissolved phosphate was efficiently trapped at all depths in the soil columns, with ≤2% of the added stormwater phosphate recovered in the drainage effluent. These findings imply that, when designed properly, bioretention cells can support high infiltration rates and mitigate nutrient pollution in cold climates.