Enrique Morán‐Tejeda


2021

DOI bib
Changes in the frequency of global high mountain rain-on-snow events due to climate warming
J. I. López‐Moreno, John W. Pomeroy, Enrique Morán‐Tejeda, Jesús Revuelto, F. Navarro-Serrano, Ixeia Vidaller, Esteban Alonso‐González
Environmental Research Letters, Volume 16, Issue 9

Abstract Rain-on-snow (ROS) events can trigger severe floods in mountain regions. There is high uncertainty about how the frequency of ROS events (ROS) and associated floods will change as climate warms. Previous research has found considerable spatial variability in ROS responses to climate change. Detailed global assessments have not been conducted. Here, atmospheric reanalysis data was used to drive a physically based snow hydrology model to simulate the snowpack and the streamflow response to climate warming of a 5.25 km 2 virtual basin (VB) applied to different high mountain climates around the world. Results confirm that the sensitivity of ROS to climate warming is highly variable among sites, and also with different elevations, aspects and slopes in each basin. The hydrological model predicts a decrease in the frequency of ROS with warming in 30 out 40 of the VBs analyzed; the rest have increasing ROS. The dominant phase of precipitation, duration of snow cover and average temperature of each basin are the main factors that explain this variation in the sensitivity of ROS to climate warming. Within each basin, the largest decreases in ROS were predicted to be at lower elevations and on slopes with sunward aspects. Although the overall frequency of ROS drops, the hydrological importance of ROS is not expected to decline. Peak streamflows due to ROS are predicted to increase due to more rapid melting from enhanced energy inputs, and warmer snowpacks during future ROS.

DOI bib
The significance of monitoring high mountain environments to detect heavy precipitation hotspots: a case study in Gredos, Central Spain
Enrique Morán‐Tejeda, José Manuel Llorente-Pinto, Antonio Ceballos Barbancho, Miquel Tomas‐Burguera, César Azorín-Molina, Esteban Alonso‐González, Jesús Revuelto, Javier Herrero, Juan I. López‐Moreno
Theoretical and Applied Climatology, Volume 146, Issue 3-4

Abstract In 2015, a new automatic weather station (AWS) was installed in a high elevation site in Gredos mountains (Central System, Spain). Since then, a surprisingly high number of heavy precipitation events have been recorded (55 days with precipitation over 50 mm, and a maximum daily precipitation of 446.9 mm), making this site a hotspot in Spain in terms of annual precipitation (2177 mm year) and extreme precipitation events. The neighboring stations available in the region with longer data series, including the closest ones, already informed of wet conditions in the area, but not comparable with such anomaly behavior detected in the new station (51% higher). In this study, we present the temporal variability of detected heavy precipitation events in this mountain area, and its narrow relation with atmospheric patterns over the Iberian Peninsula. Results revealed that 65% of the events occurred during advections from West, Southwest, South and cyclonic situations. A regression analysis showed that the precipitation anomaly is mostly explained by the location windward to the Atlantic wet air masses and the elevation. However, the variance explained by the models is rather low (average R 2 for all events > 50 mm is 0.21). The regression models underestimate on average a 60% intensity of rainfall events. Oppositely, the high-resolution weather forecast model AROME at 0.025° was able to point out the extraordinary character of precipitation at this site, and the underestimation of observed precipitation in the AWS was about 26%. This result strongly suggests the usefulness of weather models to improve the knowledge of climatic extremes over large areas, and to improve the design of currently available observational networks.

2020

DOI bib
Decoupling of warming mountain snowpacks from hydrological regimes
Juan I. López‐Moreno, John W. Pomeroy, Esteban Alonso‐González, Enrique Morán‐Tejeda, Jesús Revuelto
Environmental Research Letters, Volume 15, Issue 11

Abstract Climate warming will reduce the duration of mountain snowpacks and spring runoff, impacting the timing, volume, reliability, and sources of water supplies to mountain headwaters of rivers that support a large proportion of humanity. It is often assumed that snow hydrology will change in proportion to climate warming, but this oversimplifies the complex non-linear physical processes that drive precipitation phases and snowmelt. In this study, snow hydrology predictions made using a physical process snow hydrology model for 44 mountains areas worldwide enabled analysis of how snow and hydrological regimes will respond and interact under climate warming. The results show a generalized decoupling of mountain river hydrology from headwater snowpack regimes. Consequently, most river hydrological regimes shifted from reflecting the seasonal snowmelt freshet to responding rapidly to winter and spring precipitation. Similar to that already observed in particular regions, this study confirms that the worldwide decline in snow accumulation and snow cover duration with climate warming is substantial and spatially variable, yet highly predictable from air temperature and humidity data. Hydrological regimes showed less sensitivity, and less variability in their sensitivity to warming than did snowpack regimes. The sensitivity of the snowpack to warming provides crucial information for estimating shifts in the timing and contribution of snowmelt to runoff. However, no link was found between the magnitude of changes in the snowpack and changes in annual runoff.

2018

DOI bib
The European mountain cryosphere: a review of its current state, trends, and future challenges
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan I. López‐Moreno, Jan Magnusson, Christoph Marty, Enrique Morán‐Tejeda, Samuel Morin, Mohamed Naaïm, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, Christian Vincent
The Cryosphere, Volume 12, Issue 2

Abstract. The mountain cryosphere of mainland Europe is recognized to have important impacts on a range of environmental processes. In this paper, we provide an overview on the current knowledge on snow, glacier, and permafrost processes, as well as their past, current, and future evolution. We additionally provide an assessment of current cryosphere research in Europe and point to the different domains requiring further research. Emphasis is given to our understanding of climate–cryosphere interactions, cryosphere controls on physical and biological mountain systems, and related impacts. By the end of the century, Europe's mountain cryosphere will have changed to an extent that will impact the landscape, the hydrological regimes, the water resources, and the infrastructure. The impacts will not remain confined to the mountain area but also affect the downstream lowlands, entailing a wide range of socioeconomical consequences. European mountains will have a completely different visual appearance, in which low- and mid-range-altitude glaciers will have disappeared and even large valley glaciers will have experienced significant retreat and mass loss. Due to increased air temperatures and related shifts from solid to liquid precipitation, seasonal snow lines will be found at much higher altitudes, and the snow season will be much shorter than today. These changes in snow and ice melt will cause a shift in the timing of discharge maxima, as well as a transition of runoff regimes from glacial to nival and from nival to pluvial. This will entail significant impacts on the seasonality of high-altitude water availability, with consequences for water storage and management in reservoirs for drinking water, irrigation, and hydropower production. Whereas an upward shift of the tree line and expansion of vegetation can be expected into current periglacial areas, the disappearance of permafrost at lower altitudes and its warming at higher elevations will likely result in mass movements and process chains beyond historical experience. Future cryospheric research has the responsibility not only to foster awareness of these expected changes and to develop targeted strategies to precisely quantify their magnitude and rate of occurrence but also to help in the development of approaches to adapt to these changes and to mitigate their consequences. Major joint efforts are required in the domain of cryospheric monitoring, which will require coordination in terms of data availability and quality. In particular, we recognize the quantification of high-altitude precipitation as a key source of uncertainty in projections of future changes. Improvements in numerical modeling and a better understanding of process chains affecting high-altitude mass movements are the two further fields that – in our view – future cryospheric research should focus on.