Eric Gilleland


DOI bib
Spatial Dependence of Floods Shaped by Spatiotemporal Variations in Meteorological and Land‐Surface Processes
Manuela Irene Brunner, Eric Gilleland, Andy Wood, Daniel L. Swain, Martyn P. Clark
Geophysical Research Letters, Volume 47, Issue 13

Floods often affect large regions and cause adverse societal impacts. Regional flood hazard and risk assessments therefore require a realistic representation of spatial flood dependencies to avoid the overestimation or underestimation of risk. However, it is not yet well understood how spatial flood dependence, that is, the degree of co-occurrence of floods at different locations, varies in space and time and which processes influence the strength of this dependence. We identify regions in the United States with seasonally similar flood behavior and analyze processes governing spatial dependence. We find that spatial flood dependence varies regionally and seasonally and is generally strongest in winter and spring and weakest in summer and fall. Moreover, we find that land-surface processes are crucial in shaping the spatiotemporal characteristics of flood events. We conclude that the regional and seasonal variations in spatial flood dependencies must be considered when conducting current and future flood risk assessments.

DOI bib
How Probable Is Widespread Flooding in the United States?
Manuela Irene Brunner, Simon Michael Papalexiou, Martyn P. Clark, Eric Gilleland
Water Resources Research, Volume 56, Issue 10

Widespread flooding can cause major damages and substantial recovery costs. Still, estimates of how susceptible a region is to widespread flooding are largely missing mainly because of the sparseness of widespread flood events in records. The aim of this study is to assess the seasonal susceptibility of regions in the United States to widespread flooding using a stochastic streamflow generator, which enables simulating a large number of spatially consistent flood events. Furthermore, we ask which factors influence the strength of regional flood susceptibilities. We show that susceptibilities to widespread flooding vary regionally and seasonally. They are highest in regions where catchments show regimes with a strong seasonality, that is, the Pacific Northwest, the Rocky Mountains, and the Northeast. In contrast, they are low in regions where catchments are characterized by a weak seasonality and intermittent regimes such as the Great Plains. Furthermore, susceptibility is found to be the highest in winter and spring when spatial flood dependencies are strongest because of snowmelt contributions and high soil moisture availability. We conclude that regional flood susceptibilities emerge in river basins with catchments sharing similar streamflow and climatic regimes.