G. F. Slater


2020

DOI bib
Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency
Yichen Wu, Nan Zhang, G. F. Slater, J. M. Waddington, Charles‐François de Lannoy
Science of The Total Environment, Volume 714

Boreal peatlands provide critical global and regional ecosystem functions including climate regulation and nutrient and water retention. Wildfire represents the largest disturbance to these ecosystems. Peatland resilience depends greatly on the extent of post-fire peat soil hydrophobicity. Climate change is altering wildfire intensity and severity and consequently impacting post-fire peat soil chemistry and structure. However, research on fire-impacted peatlands has rarely considered the influence of peat soil chemistry and structure on peatland resilience. Here we characterized the geochemical and physical properties of natural peat soils under laboratory heating conditions. The general trend observed is that hydrophilic peat soils become hydrophobic under moderate heating and then become hydrophilic again after heating for longer, or at higher, temperatures. The loss of peat soil hydrophilicity initially occurs due to evaporative water loss (250 °C and 300 °C for <5 min). Gently but thoroughly dried peat soils (105 °C for 24 h) also show mass losses after heating, indicating the loss of organic compounds through thermal degradation. Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the chemistry of unburned and 300 °C burned peat soils, and various fatty acids, polycyclic compounds, saccharides, aromatic acids, short-chain molecules, lignin and carbohydrates were identified. We determined that the heat-induced degradation of polycyclic compounds and aliphatic hydrocarbons, especially fatty acids, caused dried, hydrophobic peat soils to become hydrophilic after only 20 min of heating at 300 °C. Furthermore, peat soils became hydrophilic more quickly (20 min vs 6 h) with an increase in heat from 250 °C to 300 °C. Minimal structural changes occurred, as characterized by BET and SEM analyses, confirming that surface chemistry, in particular fatty acid content, rather than structure govern changes in peat soil hydrophobicity.

2018

DOI bib
Influence of seasonal temperature on tree-ring δ13C in different-aged temperate pine forests
Shawn McKenzie, G. F. Slater, Sang‐Tae Kim, Michael F. J. Pisaric, M. Altaf Arain
Forest Ecology and Management, Volume 419-420

Abstract Tree growth rings from three specimens in two different aged (14- and 77-year old) white pine plantation forests were analyzed for stable carbon isotope ratios to identify both short- and long-term variations in physiological response to changing environmental conditions. Three isotopic (δ13Ccorr) time series records were constructed from whole wood samples extracted from paths parallel to the growth rings in each forest. These δ13Ccorr records were corrected for the long-term anthropogenically induced CO2 and compared to historical climate (temperature, precipitation) data from 1935 to 2016. High resolution inter-annual variations in trees in each stand displayed similar intra-annual cycles in δ13Ccorr, demonstrating the seasonal physiological response of these forests to environmental stressors. In both stands, growing season temperature acted as a significant control (p