Gabriel Gosselin


2023

DOI bib
Arctic soil methane sink increases with drier conditions and higher ecosystem respiration
Carolina Voigt, Anna-Maria Virkkala, Gabriel Gosselin, Kathryn A. Bennett, T. Andrew Black, Matteo Detto, Charles Chevrier-Dion, Georg Guggenberger, Wasi Hashmi, Leonie Kohl, Dan Kou, Charlotte Marquis, Philip Marsh, Maija E. Marushchak, Zoran Nesic, Hannu Nykänen, Taija Saarela, Leopold Sauheitl, Branden Walker, Niels Weiss, Evan J. Wilcox, Oliver Sonnentag
Nature Climate Change

Abstract Arctic wetlands are known methane (CH 4 ) emitters but recent studies suggest that the Arctic CH 4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH 4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH 4 occurred at all sites at rates of 0.092 ± 0.011 mgCH 4 m −2 h −1 (mean ± s.e.), CH 4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH 4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH 4 uptake by Arctic soils, providing a negative feedback to global climate change.

DOI bib
Pan‐Arctic soil moisture control on tundra carbon sequestration and plant productivity
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Beniamino Gioli, Barbara Bailey, George Burba, Eugénie Euskirchen, Jennifer D. Watts, Kyle A. Arndt, Mary Farina, John S. Kimball, Martin Heimann, Mathias Goeckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, A.J. Dolman, R. Commane, Charles E. Miller, Josh Hashemi, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Elyn Humphreys, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Global Change Biology, Volume 29, Issue 5

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.

2022

DOI bib
Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems
Donatella Zona, Peter M. Lafleur, Koen Hufkens, Barbara Bailey, Beniamino Gioli, George Burba, Jordan P. Goodrich, A. K. Liljedahl, Eugénie Euskirchen, Jennifer D. Watts, Mary Farina, John S. Kimball, Martin Heimann, Mathias Göckede, Martijn Pallandt, Torben R. Christensen, Mikhail Mastepanov, Efrèn López‐Blanco, Marcin Jackowicz-Korczyński, Han Dolman, Luca Belelli Marchesini, R. Commane, Steven C. Wofsy, Charles E. Miller, David A. Lipson, Josh Hashemi, Kyle A. Arndt, Lars Kutzbach, David Holl, Julia Boike, Christian Wille, Torsten Sachs, Aram Kalhori, Xingyu Song, Xiaofeng Xu, Elyn Humphreys, C. Koven, Oliver Sonnentag, Gesa Meyer, Gabriel Gosselin, Philip Marsh, Walter C. Oechel
Scientific Reports, Volume 12, Issue 1

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.

DOI bib
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, Julia Boike
The Cryosphere, Volume 16, Issue 10

Abstract. Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n=1050) compared to traditional snowpit observations (3 cm vertical resolution; n=115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE=5.8 ∘C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE=2.5 ∘C). The required correction factor is strongly related to snow depth (R2=0.77,RMSE=0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets.

2021

DOI bib
Impact of measured and simulated tundra snowpack properties on heat transfer
Victoria Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Philip Marsh, Joshua King

Abstract. Snowpack microstructure controls the transfer of heat to, and the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two different winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow MicroPenetrometer profiles allowed snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Bias-correction of the simulated thermal conductivity (relative to field measurements) improved simulated soil temperatures (RMSE = 2.1 °C). Multiple linear regression shows the required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) particularly early in the winter. Furthermore, CLM simulations did not adequately represent the observed high proportions of depth hoar. Addressing uncertainty in simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures act as a control on subnivean soil respiration, and hence impact Arctic winter carbon fluxes and budgets.