Garrett Morandi
2020
Mechanisms of pH-Dependent Uptake of Ionizable Organic Chemicals by Fish from Oil Sands Process-Affected Water (OSPW)
Markus Brinkmann,
Hattan A. Alharbi,
Ulyana Fuchylo,
Steve Wiseman,
Garrett Morandi,
Hui Peng,
John P. Giesy,
Paul D. Jones,
Markus Hecker
Environmental Science & Technology, Volume 54, Issue 15
Uptake and effects of ionizable organic chemicals (IOCs) that are weak acids in aqueous solution by fish can differ as a function of pH. While the pH-dependent behavior of select IOCs is well-understood, complex mixtures of IOCs, e.g., from oil sands process-affected water (OSPW), have not yet been studied systematically. Here, we established an in vitro screening method using the rainbow trout gill cell line, RTgill-W1, to investigate pH-dependent cytotoxicity and permeation of IOCs across cultured epithelia using ultra-high-performance liquid chromatography with high-resolution mass spectrometry (UPLC-HRMS). The assay was benchmarked using model chemicals and technical mixtures, and then used to characterize fractions and reconstituted extracts of field-collected OSPW. Significant pH-dependent cytotoxicity of individual IOCs, acidic fractions, and reconstituted extracts of OSPW was observed. In vitro data were in good agreement with data from a 96 h in vivo exposure experiment with juvenile rainbow trout. Permeation of some IOCs from OSPW was mediated by active transport, as revealed by studies in which inhibitors of these active transport mechanisms were applied. We conclude that the RTgill-W1 in vitro assay is useful for the screening of pH-dependent uptake of IOCs in fish, and has applications for in vitro-in vivo extrapolation, and prioritization of chemicals in nontarget screenings.
2019
Comparison of the Effects of Extraction Techniques on Mass Spectrometry Profiles of Dissolved Organic Compounds in Oil Sand Process-Affected Water
Hattan A. Alharbi,
Garrett Morandi,
Paul D. Jones,
Steve Wiseman,
John P. Giesy
Energy & Fuels, Volume 33, Issue 8
Recent advances in mass spectrometry have facilitated chemical characterization and profiling of complex environmental mixtures such as oil sand process-affected water (OSPW) and identification of previously unresolved chemicals. However, because OSPW is a complex mixture of salts, metals, suspended particulate matter, and dissolved organics, extraction techniques are required to reduce the effects of signal suppression/enhancement. In this work, Orbitrap, ultrahigh resolution mass spectrometry was used to perform a comprehensive comparison of solid phase extraction (SPE) and liquid–liquid extraction (LLE) techniques on profiling of dissolved organic chemicals in OSPW. When operated in negative ion mode, extraction of naphthenic acid (NAs–O2) was dependent on acidification of OSPW samples for C18 and LLE techniques. However, when applying a hydrophilic lipophilic balance (HLB) sorbent (ABN) SPE technique, the extractability of NAs was independent of pH. When operated in positive ion mode, for all extracti...
Search
Co-authors
- Hattan A. Alharbi 2
- Steve Wiseman 2
- John P. Giesy 2
- Paul D. Jones 2
- Markus Brinkmann 1
- show all...
Venues
- GWF2