2023
DOI
bib
abs
Wild fish responses to wastewater treatment plant upgrades in the Grand River, Ontario
Kirsten E. Nikel,
Gerald R. Tetreault,
Patricija Marjan,
Keegan A. Hicks,
Meghan Fuzzen,
Nivetha Srikanthan,
Emily K. McCann,
Hadi A. Dhiyebi,
Leslie M. Bragg,
Pam Law,
Dominika Celmer‐Repin,
Sonya Kleywegt,
Jessie Cunningham,
Thomas Clark,
Mark E. McMaster,
Mark R. Servos,
Kirsten E. Nikel,
Gerald R. Tetreault,
Patricija Marjan,
Keegan A. Hicks,
Meghan Fuzzen,
Nivetha Srikanthan,
Emily K. McCann,
Hadi A. Dhiyebi,
Leslie M. Bragg,
Pam Law,
Dominika Celmer‐Repin,
Sonya Kleywegt,
Jessie Cunningham,
Thomas Clark,
Mark E. McMaster,
Mark R. Servos
Aquatic Toxicology, Volume 255
Municipal wastewater treatment plant (WWTP) effluent is one of several point sources of contaminants (nutrients, pharmaceuticals, estrogens, etc.) which can lead to adverse responses in aquatic life. Studies of WWTP effluent impacts on rainbow darter (Etheostoma caeruleum) collected downstream of WWTPs in the Grand River, Ontario have reported disruption at multiple levels of biological organization, including altered vitellogenin gene expression, lower levels of in vitro steroid production, and high frequency of intersex. However, major upgrades have occurred at treatment plants in the central Grand River over the last decade. Treatment upgrades to the Waterloo WWTP were initiated in 2009 but due to construction delays, the upgrades came fully on-line in 2017/2018. Responses in rainbow darter have been followed at sites associated with the outfall consistently over this entire time period. The treatment plant upgrade resulted in nitrification of effluent, and once complete there was a major reduction in effluent ammonia, selected pharmaceuticals, and estrogenicity. This study compared several key responses in rainbow darter associated with the Waterloo WWTP outfall prior to and post upgrades. Stable isotopes signatures in fish were used to track exposure to effluent and changed dramatically over time, corresponding to the effluent quality. Disruptions in in vitro steroid production and intersex in the darters that had been identified prior to the upgrades were no longer statistically different from the upstream reference sites after the upgrades. Although annual variations in water temperature and flow can potentially mask or exacerbate the effects of the WWTP effluent, major capital investments in wastewater treatment targeted at improving effluent quality have corresponded with the reduction of adverse responses in fish in the receiving environment.
DOI
bib
abs
Wild fish responses to wastewater treatment plant upgrades in the Grand River, Ontario
Kirsten E. Nikel,
Gerald R. Tetreault,
Patricija Marjan,
Keegan A. Hicks,
Meghan Fuzzen,
Nivetha Srikanthan,
Emily K. McCann,
Hadi A. Dhiyebi,
Leslie M. Bragg,
Pam Law,
Dominika Celmer‐Repin,
Sonya Kleywegt,
Jessie Cunningham,
Thomas Clark,
Mark E. McMaster,
Mark R. Servos,
Kirsten E. Nikel,
Gerald R. Tetreault,
Patricija Marjan,
Keegan A. Hicks,
Meghan Fuzzen,
Nivetha Srikanthan,
Emily K. McCann,
Hadi A. Dhiyebi,
Leslie M. Bragg,
Pam Law,
Dominika Celmer‐Repin,
Sonya Kleywegt,
Jessie Cunningham,
Thomas Clark,
Mark E. McMaster,
Mark R. Servos
Aquatic Toxicology, Volume 255
Municipal wastewater treatment plant (WWTP) effluent is one of several point sources of contaminants (nutrients, pharmaceuticals, estrogens, etc.) which can lead to adverse responses in aquatic life. Studies of WWTP effluent impacts on rainbow darter (Etheostoma caeruleum) collected downstream of WWTPs in the Grand River, Ontario have reported disruption at multiple levels of biological organization, including altered vitellogenin gene expression, lower levels of in vitro steroid production, and high frequency of intersex. However, major upgrades have occurred at treatment plants in the central Grand River over the last decade. Treatment upgrades to the Waterloo WWTP were initiated in 2009 but due to construction delays, the upgrades came fully on-line in 2017/2018. Responses in rainbow darter have been followed at sites associated with the outfall consistently over this entire time period. The treatment plant upgrade resulted in nitrification of effluent, and once complete there was a major reduction in effluent ammonia, selected pharmaceuticals, and estrogenicity. This study compared several key responses in rainbow darter associated with the Waterloo WWTP outfall prior to and post upgrades. Stable isotopes signatures in fish were used to track exposure to effluent and changed dramatically over time, corresponding to the effluent quality. Disruptions in in vitro steroid production and intersex in the darters that had been identified prior to the upgrades were no longer statistically different from the upstream reference sites after the upgrades. Although annual variations in water temperature and flow can potentially mask or exacerbate the effects of the WWTP effluent, major capital investments in wastewater treatment targeted at improving effluent quality have corresponded with the reduction of adverse responses in fish in the receiving environment.
2017
DOI
bib
abs
Reduction of Intersex in a Wild Fish Population in Response to Major Municipal Wastewater Treatment Plant Upgrades
Keegan A. Hicks,
Meghan Fuzzen,
Emily K. McCann,
Maricor J. Arlos,
Leslie M. Bragg,
Sonya Kleywegt,
Gerald R. Tetreault,
Mark E. McMaster,
Mark R. Servos
Environmental Science & Technology, Volume 51, Issue 3
Intersex in fish downstream of municipal wastewater treatment plants (MWWTPs) is a global concern. Consistent high rates of intersex in male rainbow darter (Etheostoma caeruleum) have been reported for several years in the Grand River, in southern Ontario, Canada, in close proximity to two MWWTPs. The larger MWWTP (Kitchener) recently underwent upgrades that included the conversion from a carbonaceous activated sludge to nitrifying activated sludge treatment process. This created a unique opportunity to assess whether upgrades designed to improve effluent quality could also remediate the intersex previously observed in wild fish. Multiple years (2007-2012) of intersex data on male rainbow darter collected before the upgrades at sites associated with the MWWTP outfall were compared with intersex data collected in postupgrade years (2013-2015). These upgrades resulted in a reduction from 70 to 100% intersex incidence (preupgrade) to <10% in postupgrade years. Although the cause of intersex remains unknown, indicators of effluent quality including nutrients, pharmaceuticals, and estrogenicity improved in the effluent after the upgrades. This study demonstrated that investment in MWWTP upgrades improved effluent quality and was associated with an immediate change in biological responses in the receiving environment. This is an important finding considering the tremendous cost of wastewater infrastructure.
The present study examined in vitro 11-ketotestosterone and testosterone production by the testes of rainbow darter (Etheostoma caeruleum) collected from selected reference sites and downstream of 2 municipal wastewater treatment plants (MWWTPs; Waterloo and Kitchener) on the central Grand River (Ontario, Canada), over a 6-yr period (2011-2016). The main objective was to investigate if infrastructure upgrades at the Kitchener MWWTP in 2012 resulted in a recovery of this response in the post-upgrade period (2013-2016). Two supporting studies showed that the fall season is appropriate for measuring in vitro sex steroid production because it provides stable detection of steroid patterns, and that the sample handling practiced in the present study did not introduce a bias. Infrastructure upgrades of the Kitchener MWWTP resulted in significant reductions in ammonia and estrogenicity. After the upgrades, 11-ketotestosterone production by MWWTP-exposed fish increased in 2013 and it continued to recover throughout the study period of 2014 through 2016, returning to levels measured in reference fish. Testosterone production was less sensitive and it lacked consistency. The Waterloo MWWTP underwent some minor upgrades but the level of ammonia and estrogenicity remained variable over time. The production of 11-ketotestosterone and testosterone in rainbow darter below the Waterloo MWWTP was variable and without a clear recovery pattern over the course of the present study. The results of the present study demonstrated that measuring production of sex steroids (especially 11-ketotestosterone) over multiple years can be relevant for assessing responses in fish to environmental changes such as those resulting from major infrastructure upgrades. Environ Toxicol Chem 2018;37:501-514. © 2017 SETAC.