Grant J. Jensen


2022

DOI bib
Microbial Community Compositional Stability in Agricultural Soils During Freeze-Thaw and Fertilizer Stress
Grant J. Jensen, Konrad Krogstad, Fereidoun Rezanezhad, Laura Hug
Frontiers in Environmental Science, Volume 10

Microbial activity persists in cold region agricultural soils during the fall, winter, and spring (i.e., non-growing season) and frozen condition, with peak activity during thaw events. Climate change is expected to change the frequency of freeze-thaw cycles (FTC) and extreme temperature events (i.e, altered timing, extreme heat/cold events) in temperate cold regions, which may hasten microbial consumption of fall-amended fertilizers, decreasing potency come the growing season. We conducted a high-resolution temporal examination of the impacts of freeze-thaw and nutrient stress on microbial communities in agricultural soils across both soil depth and time. Four soil columns were incubated under a climate model of a non-growing season including precipitation, temperature, and thermal gradient with depth over 60 days. Two columns were amended with fertilizer, and two incubated as unamended soil. The impacts of repeated FTC and nutrient stress on bacterial, archaeal, and fungal soil community members were determined, providing a deeply sampled longitudinal view of soil microbial response to non-growing season conditions. Geochemical changes from flow-through leachate and amplicon sequencing of 16S and ITS rRNA genes were used to assess community response. Despite nitrification observed in fertilized columns, there were no significant microbial diversity, core community, or nitrogen cycling population trends in response to nutrient stress. FTC impacts were observable as an increase in alpha diversity during FTC. Community compositions shifted across a longer time frame than individual FTC, with bulk changes to the community in each phase of the experiment. Our results demonstrate microbial community composition remains relatively stable for archaea, bacteria, and fungi through a non-growing season, independent of nutrient availability. This observation contrasts canonical thinking that FTC have significant and prolonged effects on microbial communities. In contrast to permafrost and other soils experiencing rare FTC, in temperate agricultural soils regularly experiencing such perturbations, the response to freeze-thaw and fertilizer stress may be muted by a more resilient community or be controlled at the level of gene expression rather than population turn-over. These results clarify the impacts of winter FTC on fertilizer consumption, with implications for agricultural best practices and modeling of biogeochemical cycling in agroecosystems.

DOI bib
Nitrogen Leaching From Agricultural Soils Under Imposed Freeze-Thaw Cycles: A Column Study With and Without Fertilizer Amendment
Konrad Krogstad, Mehdi Gharasoo, Grant J. Jensen, Laura Hug, David L. Rudolph, Philippe Van Cappellen, Fereidoun Rezanezhad
Frontiers in Environmental Science, Volume 10

Cold regions are warming faster than the rest of the planet, with the greatest warming occurring during the winter and shoulder seasons. Warmer winters are further predicted to result in more frequent soil freezing and thawing events. Freeze-thaw cycles affect biogeochemical soil processes and alter carbon and nutrient export from soils, hence impacting receiving ground and surface waters. Cold region agricultural management should therefore consider the possible effects on water quality of changing soil freeze-thaw dynamics under future climate conditions. In this study, soil column experiments were conducted to assess the leaching of fertilizer nitrogen (N) from an agricultural soil during the non-growing season. Identical time series temperature and precipitation were imposed to four parallel soil columns, two of which had received fertilizer amendments, the two others not. A 15-30-15 N-P-K fertilizer (5.8% ammonium and 9.2% urea) was used for fertilizer amendments. Leachates from the soil columns were collected and analyzed for major cations and anions. The results show that thawing following freezing caused significant export of chloride (Cl − ), sulfate (SO 4 2− ) and nitrate (NO 3 − ) from the fertilizer-amended soils. Simple plug flow reactor model calculations indicated that the high NO 3 − concentrations produced during the fertilized soil thawing events were due to nitrification of fertilizer N in the upper oxidized portion of the soil. The very low concentrations of NO 3 − and ammonium in the non-fertilized soils leachates implied that the freeze-thaw cycles had little impact on the mineralization of soil organic N. The findings, while preliminary, indicate that unwanted N enrichment of aquifers and rivers in agricultural areas caused by fall application of N fertilizers may be exacerbated by changing freeze-thaw activity.

2021

DOI bib
Impact of Winter Soil Processes on Nutrient Leaching in Cold Region Agroecosystems
Konrad Krogstad, Grant J. Jensen, Mehdi Gharasoo, Laura Hug, David L. Rudolph, Philippe Van Cappellen, Fereidoun Rezanezhad, Konrad Krogstad, Grant J. Jensen, Mehdi Gharasoo, Laura Hug, David L. Rudolph, Philippe Van Cappellen, Fereidoun Rezanezhad

High-latitude cold regions are warming more than twice as fast as the rest of the planet, with the greatest warming occurring during the winter. Warmer winters are associated with shorter periods of snow cover, resulting in more frequent and extensive soil freezing and thawing. Freeze-thaw cycles influence soil chemical, biological, and physical properties and any changes to winter soil processes may impact carbon and nutrients export from affected soils, possibly altering soil health and nearby water quality. These impacts are relevant for agricultural soils and practices in cold regions as they are critical in governing water flows and quality within agroecosystems. In this study, a soil column experiment was conducted to assess the leaching of nutrients from fertilized agricultural soil during the non-growing season. Four soil columns were exposed to a non-growing season temperature and precipitation model and fertilizer amendments were made to two of the columns to determine the efficacy of fall-applied fertilizers and compared to other two unfertilized control columns. Leachates from the soil columns were collected and analyzed for cations and anions. The experiment results showed that a transition from a freeze period to a thaw period resulted in significant loss of chloride (Cl-), sulfate (SO42-) and nitrate (NO3-). Even with low NO3- concentrations in the applied artificial rainwater and fertilizer, high NO3- concentrations (~150 mg l-1) were observed in fertilized column leachates. Simple plug flow reactor model results indicate the high NO3- leachates are found to be due to active nitrification occurring in the upper oxidized portion of the soil columns mimicking overwinter NO3- losses via nitrification in agricultural fields. The low NO3- leachates in unfertilized columns suggest that freeze-thaw cycling had little effect on N mineralization in soil. Findings from this study will ultimately be used to bolster winter soil biogeochemical models by elucidating nutrient fluxes over changing winter conditions to refine best management practices for fertilizer application.

DOI bib
Impact of Winter Soil Processes on Nutrient Leaching in Cold Region Agroecosystems
Konrad Krogstad, Grant J. Jensen, Mehdi Gharasoo, Laura Hug, David L. Rudolph, Philippe Van Cappellen, Fereidoun Rezanezhad, Konrad Krogstad, Grant J. Jensen, Mehdi Gharasoo, Laura Hug, David L. Rudolph, Philippe Van Cappellen, Fereidoun Rezanezhad

High-latitude cold regions are warming more than twice as fast as the rest of the planet, with the greatest warming occurring during the winter. Warmer winters are associated with shorter periods of snow cover, resulting in more frequent and extensive soil freezing and thawing. Freeze-thaw cycles influence soil chemical, biological, and physical properties and any changes to winter soil processes may impact carbon and nutrients export from affected soils, possibly altering soil health and nearby water quality. These impacts are relevant for agricultural soils and practices in cold regions as they are critical in governing water flows and quality within agroecosystems. In this study, a soil column experiment was conducted to assess the leaching of nutrients from fertilized agricultural soil during the non-growing season. Four soil columns were exposed to a non-growing season temperature and precipitation model and fertilizer amendments were made to two of the columns to determine the efficacy of fall-applied fertilizers and compared to other two unfertilized control columns. Leachates from the soil columns were collected and analyzed for cations and anions. The experiment results showed that a transition from a freeze period to a thaw period resulted in significant loss of chloride (Cl-), sulfate (SO42-) and nitrate (NO3-). Even with low NO3- concentrations in the applied artificial rainwater and fertilizer, high NO3- concentrations (~150 mg l-1) were observed in fertilized column leachates. Simple plug flow reactor model results indicate the high NO3- leachates are found to be due to active nitrification occurring in the upper oxidized portion of the soil columns mimicking overwinter NO3- losses via nitrification in agricultural fields. The low NO3- leachates in unfertilized columns suggest that freeze-thaw cycling had little effect on N mineralization in soil. Findings from this study will ultimately be used to bolster winter soil biogeochemical models by elucidating nutrient fluxes over changing winter conditions to refine best management practices for fertilizer application.